Difference between revisions of "031 Review Part 2, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 51: | Line 51: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |We claim that <math>T</math> is not a linear transformation. | ||
+ | |- | ||
+ | |Consider the vectors <math>\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 0 | ||
+ | \end{bmatrix}</math> and <math>\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 1 | ||
+ | \end{bmatrix}.</math> | ||
+ | |- | ||
+ | |Then, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{T\bigg(\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 0 | ||
+ | \end{bmatrix}+\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 1 | ||
+ | \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 1 | ||
+ | \end{bmatrix}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 2 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |On the other hand, notice | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{T\bigg(\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 0 | ||
+ | \end{bmatrix}+\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 1 | ||
+ | \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 1 | ||
+ | \end{bmatrix}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 2 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Revision as of 13:30, 12 October 2017
(a) Let be a transformation given by
Determine whether is a linear transformation. Explain.
(b) Let and Find and
Foundations: |
---|
A map is a linear transformation if |
|
|
|
|
Solution:
(a)
Step 1: |
---|
We claim that is not a linear transformation. |
Consider the vectors and |
Then, we have |
|
Step 2: |
---|
On the other hand, notice |
|
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |