Difference between revisions of "031 Review Part 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 51: Line 51:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|We claim that &nbsp;<math>T</math>&nbsp; is not a linear transformation.
 +
|-
 +
|Consider the vectors &nbsp;<math>\begin{bmatrix}
 +
          1\\
 +
          0
 +
        \end{bmatrix}</math>&nbsp; and &nbsp;<math>\begin{bmatrix}
 +
          0\\
 +
          1
 +
        \end{bmatrix}.</math>
 +
|-
 +
|Then, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{T\bigg(\begin{bmatrix}
 +
          1\\
 +
          0
 +
        \end{bmatrix}+\begin{bmatrix}
 +
          0\\
 +
          1
 +
        \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix}
 +
          1\\
 +
          1
 +
        \end{bmatrix}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\begin{bmatrix}
 +
          0\\
 +
          2
 +
        \end{bmatrix}.}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|On the other hand, notice
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{T\bigg(\begin{bmatrix}
 +
          1\\
 +
          0
 +
        \end{bmatrix}+\begin{bmatrix}
 +
          0\\
 +
          1
 +
        \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix}
 +
          1\\
 +
          1
 +
        \end{bmatrix}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\begin{bmatrix}
 +
          0\\
 +
          2
 +
        \end{bmatrix}.}
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 13:30, 12 October 2017

(a) Let    be a transformation given by

Determine whether    is a linear transformation. Explain.

(b) Let    and    Find    and  


Foundations:  
A map    is a linear transformation if
and
for all    and all  


Solution:

(a)

Step 1:  
We claim that    is not a linear transformation.
Consider the vectors    and  
Then, we have

       

Step 2:  
On the other hand, notice

       

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam