Difference between revisions of "031 Review Part 2, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
|-
 
|-
 
|
 
|
::<math>\text{dim Col}A=4.</math>
+
::<math>\text{dim Col }A=4.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">6\times 8</math>&nbsp; matrix, &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; contains vectors in &nbsp;<math style="vertical-align: 0px">\mathbb{R}^6.</math>
 +
|-
 +
|Since a vector in &nbsp;<math style="vertical-align: 0px">\mathbb{R}^6</math>&nbsp; is not a vector in &nbsp;<math style="vertical-align: -4px">\mathbb{R}^4,</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
 +
::<math>\text{Col }A\ne \mathbb{R}^4.</math>
 
|}
 
|}
  
Line 54: Line 59:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -1px">\text{dim Col }A=4</math>&nbsp; and &nbsp;<math style="vertical-align: -6px">\text{Col }A\ne \mathbb{R}^4</math>
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
 
|}
 
|}
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:08, 12 October 2017

(a) Suppose a    matrix    has 4 pivot columns. What is    Is    Why or why not?

(b) If    is a    matrix, what is the smallest possible dimension of  


Foundations:  
1. The dimension of    is equal to the number of pivots in  
2. By the Rank Theorem, if    is a    matrix, then


Solution:

(a)

Step 1:  
Since    has 4 pivot columns,
Step 2:  
Since    is a    matrix,    contains vectors in  
Since a vector in    is not a vector in    we have

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)       and  
   (b)    

Return to Sample Exam