Difference between revisions of "031 Review Part 2, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 23: Line 23:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; has 4 pivot columns,
 
|-
 
|-
 
|
 
|
 +
::<math>\text{dim Col}A=4.</math>
 
|}
 
|}
  

Revision as of 09:41, 12 October 2017

(a) Suppose a    matrix    has 4 pivot columns. What is    Is    Why or why not?

(b) If    is a    matrix, what is the smallest possible dimension of  


Foundations:  
1. The dimension of    is equal to the number of pivots in  
2. By the Rank Theorem, if    is a    matrix, then


Solution:

(a)

Step 1:  
Since    has 4 pivot columns,
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam