Difference between revisions of "031 Review Part 2, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 28: | Line 28: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |A map <math style="vertical-align: -2px">T:\mathbb{R}^n\rightarrow \mathbb{R}^m</math> is a linear transformation if | ||
|- | |- | ||
| | | | ||
+ | ::<math>T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})</math> | ||
+ | |- | ||
+ | | | ||
+ | :and | ||
+ | |- | ||
+ | | | ||
+ | ::<math>T(a\vec{x})=aT(\vec{x})</math> | ||
+ | |- | ||
+ | | | ||
+ | :for all <math style="vertical-align: -4px">\vec{x},\vec{y}\in \mathbb{R}^n</math> and all <math style="vertical-align: -1px">a\in \mathbb{R}.</math> | ||
|} | |} | ||
Revision as of 21:00, 11 October 2017
(a) Let be a transformation given by
Determine whether is a linear transformation. Explain.
(b) Let and Find and
Foundations: |
---|
A map is a linear transformation if |
|
|
|
|
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |