Difference between revisions of "031 Review Part 2, Problem 7"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 28: | Line 28: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| + | |- | ||
| + | |A map <math style="vertical-align: -2px">T:\mathbb{R}^n\rightarrow \mathbb{R}^m</math> is a linear transformation if | ||
|- | |- | ||
| | | | ||
| + | ::<math>T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})</math> | ||
| + | |- | ||
| + | | | ||
| + | :and | ||
| + | |- | ||
| + | | | ||
| + | ::<math>T(a\vec{x})=aT(\vec{x})</math> | ||
| + | |- | ||
| + | | | ||
| + | :for all <math style="vertical-align: -4px">\vec{x},\vec{y}\in \mathbb{R}^n</math> and all <math style="vertical-align: -1px">a\in \mathbb{R}.</math> | ||
|} | |} | ||
Revision as of 20:00, 11 October 2017
(a) Let be a transformation given by
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T\bigg( \begin{bmatrix} x \\ y \end{bmatrix} \bigg)= \begin{bmatrix} 1-xy \\ x+y \end{bmatrix}.}
Determine whether Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is a linear transformation. Explain.
(b) Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 1 & -3 & 0 \\ -4 & 1 &1 \end{bmatrix}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B= \begin{bmatrix} 2 & 1\\ 1 & 0 \\ -1 & 1 \end{bmatrix}.} Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB,~BA^T} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A-B^T.}
| Foundations: |
|---|
| A map Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T:\mathbb{R}^n\rightarrow \mathbb{R}^m} is a linear transformation if |
|
|
|
|
Solution:
(a)
| Step 1: |
|---|
| Step 2: |
|---|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |