Difference between revisions of "031 Review Part 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|A map &nbsp;<math style="vertical-align: -2px">T:\mathbb{R}^n\rightarrow \mathbb{R}^m</math>&nbsp; is a linear transformation if
 
|-
 
|-
 
|
 
|
 +
::<math>T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})</math>
 +
|-
 +
|
 +
:and
 +
|-
 +
|
 +
::<math>T(a\vec{x})=aT(\vec{x})</math>
 +
|-
 +
|
 +
:for all &nbsp;<math style="vertical-align: -4px">\vec{x},\vec{y}\in \mathbb{R}^n</math>&nbsp; and all &nbsp;<math style="vertical-align: -1px">a\in \mathbb{R}.</math>
 
|}
 
|}
  

Revision as of 21:00, 11 October 2017

(a) Let    be a transformation given by

Determine whether    is a linear transformation. Explain.

(b) Let    and    Find    and  


Foundations:  
A map    is a linear transformation if
and
for all    and all  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam