Difference between revisions of "031 Review Part 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 18: Line 18:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|'''1.''' The distance between the vectors &nbsp;<math style="vertical-align: 0px">\vec{u}</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>\text{dist}(\vec{u},\vec{v})=||\vec{u}-\vec{v}||.</math>
 +
|-
 +
|'''2.''' The orthogonal projection of &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; onto &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; is
 +
|-
 +
|
 +
::<math>\hat{y}=\text{proj}_L \vec{y}=\frac{\vec{y}\cdot \vec{u}}{\vec{u}\cdot \vec{u}}\vec{u}.</math>
 
|}
 
|}
  

Revision as of 20:55, 11 October 2017

Let    and  

(a) Find a unit vector in the direction of  

(b) Find the distance between    and  

(c) Let    Compute the orthogonal projection of    onto  


Foundations:  
1. The distance between the vectors    and    is
2. The orthogonal projection of    onto    is


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam