Difference between revisions of "031 Review Part 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 35: Line 35:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Every entry of the matrix &nbsp;<math style="vertical-align: 0px">3A</math>&nbsp; is &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; times the corresponding entry of &nbsp;<math style="vertical-align: 0px">A.</math>
 +
|-
 +
|So, we multiply every row of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; by &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; to get &nbsp;<math style="vertical-align: 0px">3A.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Hence, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\text{det }(3A)} & = & \displaystyle{3^6(\text{det }A)}\\
 +
&&\\
 +
& = & \displaystyle{3^6 (-10)}\\
 +
&&\\
 +
& = & \displaystyle{-7290.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 62: Line 73:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>\text{det }(3A)=-7290.</math>
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
 
|}
 
|}
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 20:43, 11 October 2017

Let    and    be    matrices with    and    Use properties of determinants to compute:

(a)  

(b)  


Foundations:  
Recall:
1. If the matrix    is identical to the matrix    except the entries in one of the rows of   
are each equal to the corresponding entries of    multiplied by the same scalar    then
2.  
3. For an invertible matrix    since    and    we have


Solution:

(a)

Step 1:  
Every entry of the matrix    is    times the corresponding entry of  
So, we multiply every row of the matrix    by    to get  
Step 2:  
Hence, we have

       

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam