Difference between revisions of "031 Review Part 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 50: Line 50:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|Notice, we have
 
|-
 
|-
 
|
 
|
 +
::<math>T(\vec{e_1})=
 +
\begin{bmatrix}
 +
          5 \\
 +
          -1
 +
        \end{bmatrix},T(\vec{e_2})=
 +
\begin{bmatrix}
 +
          -2.5 \\
 +
          0.5
 +
        \end{bmatrix},T(\vec{e_3})=
 +
\begin{bmatrix}
 +
          10 \\
 +
          -2
 +
        \end{bmatrix}.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|So, the standard matrix of &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>[T]=\begin{bmatrix}
 +
          5 & -2.5 &10 \\
 +
          -1 & 0.5 & -2
 +
        \end{bmatrix}</math>
 
|}
 
|}
  

Revision as of 18:56, 11 October 2017

Suppose    is a linear transformation given by the formula

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T\Bigg( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} \Bigg)= \begin{bmatrix} 5x_1-2.5x_2+10x_3 \\ -x_1+0.5x_2-2x_3 \end{bmatrix}}

(a) Find the standard matrix for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T.}

(b) Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{u}=7\vec{e_1}-4\vec{e_2}.}   Find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(\vec{u}).}

(c) Is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} -1 \\ 3 \end{bmatrix}}   in the range of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T?}   Explain.


Foundations:  
1. The standard matrix of a linear transformation  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T:\mathbb{R}^n\rightarrow \mathbb{R}^m}   is given by
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} T(\vec{e_1}) & T(\vec{e_2}) & \cdots & T(\vec{e_n}) \end{bmatrix} }
where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{e_1,e_2,\ldots,e_n\}}   is the standard basis of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^n.}
2. A vector  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}}   is in the image of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T}   if there exists  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}}   such that
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(\vec{x})=\vec{v}.}


Solution:

(a)

Step 1:  
Notice, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(\vec{e_1})= \begin{bmatrix} 5 \\ -1 \end{bmatrix},T(\vec{e_2})= \begin{bmatrix} -2.5 \\ 0.5 \end{bmatrix},T(\vec{e_3})= \begin{bmatrix} 10 \\ -2 \end{bmatrix}.}
Step 2:  
So, the standard matrix of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T}   is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [T]=\begin{bmatrix} 5 & -2.5 &10 \\ -1 & 0.5 & -2 \end{bmatrix}}

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam