Difference between revisions of "031 Review Part 3, Problem 11"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|First, notice
 +
|-
 +
|
 +
::<math>\vec{w}\ne \vec{0}</math>
 +
|-
 +
|since &nbsp;<math style="vertical-align: -5px">\{\vec{u},\vec{v}\}</math>&nbsp; is a basis of the eigenspace corresponding to the eigenvalue 0 of &nbsp;<math style="vertical-align: 0px">A.</math>
 +
|-
 +
|Also, we have
 
|-
 
|-
 
|
 
|
 +
::<math>A\vec{u}=\vec{0}</math>&nbsp; and &nbsp;<math>A\vec{v}=\vec{0}</math>
 +
|-
 +
|since &nbsp;<math style="vertical-align: 0px">\vec{u}</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; are eigenvectors of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 0.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{A\vec{w}} & = & \displaystyle{A(\vec{u}-2\vec{v})}\\
 +
&&\\
 +
& = & \displaystyle{A\vec{u}-2A\vec{v}}\\
 +
&&\\
 +
& = & \displaystyle{\vec{0}-2\vec{0}}\\
 +
&&\\
 +
& = & \displaystyle{\vec{0}.}
 +
\end{array}</math>
 +
|-
 +
|Hence, &nbsp;<math style="vertical-align: 0px">\vec{w}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue &nbsp;<math style="vertical-align: 0px">0.</math>
 
|}
 
|}
  
Line 43: Line 68:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -5px">\{\vec{u},\vec{v}\}</math>&nbsp; is a basis for the eigenspace of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 0, we know that
 
|-
 
|-
 
|
 
|
 +
::<math>\text{dim Nul }A=2.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Then, by the Rank Theorem, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{5} & = & \displaystyle{\text{dim Col }A+\text{dim Nul }A}\\
 +
&&\\
 +
& = & \displaystyle{\text{dim Col }A+2.}
 +
\end{array}</math>
 +
|-
 +
|Hence, we have
 
|-
 
|-
 
|
 
|
 +
::<math>\text{dim Col }A=3.</math>
 
|}
 
|}
  
Line 57: Line 96:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See solution above.
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -3px">\text{dim Col }A=3.</math>
 
|}
 
|}
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:11, 11 October 2017

Suppose    is a basis of the eigenspace corresponding to the eigenvalue 0 of a    matrix  

(a) Is    an eigenvector of    If so, find the corresponding eigenvalue.

If not, explain why.

(b) Find the dimension of  


Foundations:  
1. An eigenvector    of a matrix    corresponding to the eigenvalue    is a nonzero vector such that
2. By the Rank Theorem, if    is a    matrix, then


Solution:

(a)

Step 1:  
First, notice
since    is a basis of the eigenspace corresponding to the eigenvalue 0 of  
Also, we have
  and  
since    and    are eigenvectors of    corresponding to the eigenvalue 0.
Step 2:  
Now, we have

       

Hence,    is an eigenvector of    corresponding to the eigenvalue  

(b)

Step 1:  
Since    is a basis for the eigenspace of    corresponding to the eigenvalue 0, we know that
Step 2:  
Then, by the Rank Theorem, we have
       
Hence, we have


Final Answer:  
   (a)     See solution above.
   (b)    

Return to Sample Exam