Difference between revisions of "031 Review Part 3, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 21: | Line 21: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Since <math>\vec{x}</math> is an eigenvector of <math>A</math> corresponding to the eigenvalue <math>2,</math> we know <math>\vec{x}\neq \vec{0}</math> and | + | |Since <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue <math style="vertical-align: -4px">2,</math> we know <math style="vertical-align: -5px">\vec{x}\neq \vec{0}</math> and |
|- | |- | ||
| | | | ||
Line 50: | Line 50: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |Hence, since <math>\vec{x}\ne \vec{0},</math> we conclude that <math>\vec{x}</math> is an eigenvector of <math>A^3-A^2+I</math> corresponding to the eigenvalue <math>5.</math> | + | |Hence, since <math style="vertical-align: -5px">\vec{x}\ne \vec{0},</math> we conclude that <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of <math style="vertical-align: -2px">A^3-A^2+I</math> corresponding to the eigenvalue <math style="vertical-align: 0px">5.</math> |
|} | |} | ||
Line 59: | Line 59: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Since <math>\vec{y}</math> is an eigenvector of <math>A</math> corresponding to the eigenvalue <math>3,</math> we know <math>\vec{y}\neq \vec{0}</math> and | + | |Since <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue <math style="vertical-align: -4px">3,</math> we know <math style="vertical-align: -5px">\vec{y}\neq \vec{0}</math> and |
|- | |- | ||
| | | | ||
::<math>A\vec{y}=3\vec{y}.</math> | ::<math>A\vec{y}=3\vec{y}.</math> | ||
|- | |- | ||
− | |Also, since <math>A</math> is invertible, <math>A^{-1}</math> exists. | + | |Also, since <math style="vertical-align: 0px">A</math> is invertible, <math style="vertical-align: 0px">A^{-1}</math> exists. |
|} | |} | ||
Line 70: | Line 70: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we multiply the equation from Step 1 on the left by <math>A^{-1}</math> to obtain | + | |Now, we multiply the equation from Step 1 on the left by <math style="vertical-align: 0px">A^{-1}</math> to obtain |
|- | |- | ||
| | | | ||
Line 92: | Line 92: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |Hence, <math>A^{-1}\vec{y}=\frac{1}{3}\vec{y}.</math> | + | |Hence, <math style="vertical-align: -13px">A^{-1}\vec{y}=\frac{1}{3}\vec{y}.</math> |
|- | |- | ||
− | |Therefore, <math>\vec{y}</math> is an eigenvector of <math>A^{-1}</math> corresponding to the eigenvalue <math>\frac{1}{3}.</math> | + | |Therefore, <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A^{-1}</math> corresponding to the eigenvalue <math style="vertical-align: -12px">\frac{1}{3}.</math> |
|} | |} | ||
Revision as of 08:34, 11 October 2017
(a) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 2, then is an eigenvector of What is the corresponding eigenvalue?
(b) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 3 and is invertible, then is an eigenvector of What is the corresponding eigenvalue?
Foundations: |
---|
An eigenvector of a matrix corresponding to the eigenvalue is a nonzero vector such that |
|
Solution:
(a)
Step 1: |
---|
Since is an eigenvector of corresponding to the eigenvalue we know and |
|
Step 2: |
---|
Now, we have |
Hence, since we conclude that is an eigenvector of corresponding to the eigenvalue |
(b)
Step 1: |
---|
Since is an eigenvector of corresponding to the eigenvalue we know and |
|
Also, since is invertible, exists. |
Step 2: |
---|
Now, we multiply the equation from Step 1 on the left by to obtain |
|
Now, we have |
|
Hence, |
Therefore, is an eigenvector of corresponding to the eigenvalue |
Final Answer: |
---|
(a) See solution above. |
(b) See solution above. |