Difference between revisions of "031 Review Part 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 21: Line 21:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|Since &nbsp;<math>\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math>A</math>&nbsp; corresponding to the eigenvalue &nbsp;<math>2,</math>&nbsp; we know &nbsp;<math>\vec{x}\neq \vec{0}</math>&nbsp; and  
+
|Since &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue &nbsp;<math style="vertical-align: -4px">2,</math>&nbsp; we know &nbsp;<math style="vertical-align: -5px">\vec{x}\neq \vec{0}</math>&nbsp; and  
 
|-
 
|-
 
|
 
|
Line 50: Line 50:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Hence, since &nbsp;<math>\vec{x}\ne \vec{0},</math>&nbsp; we conclude that &nbsp;<math>\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math>A^3-A^2+I</math>&nbsp; corresponding to the eigenvalue &nbsp;<math>5.</math>
+
|Hence, since &nbsp;<math style="vertical-align: -5px">\vec{x}\ne \vec{0},</math>&nbsp; we conclude that &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: -2px">A^3-A^2+I</math>&nbsp; corresponding to the eigenvalue &nbsp;<math style="vertical-align: 0px">5.</math>
  
 
|}
 
|}
Line 59: Line 59:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Since &nbsp;<math>\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math>A</math>&nbsp; corresponding to the eigenvalue &nbsp;<math>3,</math>&nbsp; we know &nbsp;<math>\vec{y}\neq \vec{0}</math>&nbsp; and  
+
|Since &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue &nbsp;<math style="vertical-align: -4px">3,</math>&nbsp; we know &nbsp;<math style="vertical-align: -5px">\vec{y}\neq \vec{0}</math>&nbsp; and  
 
|-
 
|-
 
|
 
|
 
::<math>A\vec{y}=3\vec{y}.</math>
 
::<math>A\vec{y}=3\vec{y}.</math>
 
|-
 
|-
|Also, since &nbsp;<math>A</math>&nbsp; is invertible, &nbsp;<math>A^{-1}</math>&nbsp; exists.
+
|Also, since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; exists.
 
|}
 
|}
  
Line 70: Line 70:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we multiply the equation from Step 1 on the left by &nbsp;<math>A^{-1}</math> to obtain
+
|Now, we multiply the equation from Step 1 on the left by &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; to obtain
 
|-
 
|-
 
|
 
|
Line 92: Line 92:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Hence, &nbsp;<math>A^{-1}\vec{y}=\frac{1}{3}\vec{y}.</math>
+
|Hence, &nbsp;<math style="vertical-align: -13px">A^{-1}\vec{y}=\frac{1}{3}\vec{y}.</math>
 
|-
 
|-
|Therefore, &nbsp;<math>\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math>A^{-1}</math> corresponding to the eigenvalue &nbsp;<math>\frac{1}{3}.</math>
+
|Therefore, &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; corresponding to the eigenvalue &nbsp;<math style="vertical-align: -12px">\frac{1}{3}.</math>
 
|}
 
|}
  

Revision as of 08:34, 11 October 2017

(a) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 2, then    is an eigenvector of    What is the corresponding eigenvalue?

(b) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 3 and    is invertible, then    is an eigenvector of    What is the corresponding eigenvalue?


Foundations:  
An eigenvector    of a matrix    corresponding to the eigenvalue    is a nonzero vector such that


Solution:

(a)

Step 1:  
Since    is an eigenvector of    corresponding to the eigenvalue    we know    and
Step 2:  
Now, we have
       
Hence, since    we conclude that    is an eigenvector of    corresponding to the eigenvalue  

(b)

Step 1:  
Since    is an eigenvector of    corresponding to the eigenvalue    we know    and
Also, since    is invertible,    exists.
Step 2:  
Now, we multiply the equation from Step 1 on the left by    to obtain

       

Now, we have

       

Hence,  
Therefore,    is an eigenvector of    corresponding to the eigenvalue  


Final Answer:  
   (a)     See solution above.
   (b)     See solution above.

Return to Sample Exam