Difference between revisions of "031 Review Part 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|Since &nbsp;<math>\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math>A</math>&nbsp; corresponding to the eigenvalue &nbsp;<math>2,</math>&nbsp; we know &nbsp;<math>\vec{x}\neq \vec{0}</math>&nbsp; and
 
|-
 
|-
 
|
 
|
 +
::<math>A\vec{x}=2\vec{x}.</math>
 
|}
 
|}
  
Line 27: Line 30:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{(A^3-A^2+I)\vec{x}} & = & \displaystyle{A^3\vec{x}-A^2\vec{x}+I\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{A\cdot A\cdot A\vec{x}-A\cdot A\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{A\cdot A \cdot 2\vec{x}-A\cdot 2\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{2A\cdot A\vec{x}-2A\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{2A\cdot 2\vec{x}-2\cdot 2\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{(2\cdot 2)A\vec{x}-4\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{(4)\cdot 2\vec{x}-4\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{5\vec{x}}.
 +
\end{array}</math>
 +
|-
 +
|Hence, since &nbsp;<math>\vec{x}\ne \vec{0},</math>&nbsp; we conclude that &nbsp;<math>\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math>A^3-A^2+I</math>&nbsp; corresponding to the eigenvalue &nbsp;<math>5.</math>
 +
 
 
|}
 
|}
  
Line 34: Line 58:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|Since &nbsp;<math>\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math>A</math>&nbsp; corresponding to the eigenvalue &nbsp;<math>3,</math>&nbsp; we know &nbsp;<math>\vec{y}\neq \vec{0}</math>&nbsp; and
 
|-
 
|-
 
|
 
|
 +
::<math>A\vec{y}=3\vec{y}.</math>
 +
|-
 +
|Also, since &nbsp;<math>A</math>&nbsp; is invertible, &nbsp;<math>A^{-1}</math>&nbsp; exists.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we multiply the equation from Step 1 on the left by &nbsp;<math>A^{-1}</math> to obtain
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{A^{-1}(A\vec{y})} & = & \displaystyle{A^{-1}(3\vec{y}}\\
 +
&&\\
 +
& = & \displaystyle{3(A^{-1}\vec{y}).}
 +
\end{array}</math>
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{3(A^{-1}\vec{y})} & = & \displaystyle{A^{-1}(A\vec{y})}\\
 +
&&\\
 +
& = & \displaystyle{(A^{-1}A)\vec{y}}\\
 +
&&\\
 +
& = & \displaystyle{I\vec{y}}\\
 +
&&\\
 +
& = & \displaystyle{\vec{y}.}
 +
\end{array}</math>
 +
|-
 +
|Hence, &nbsp;<math>A^{-1}\vec{y}=\frac{1}{3}\vec{y}.</math>
 +
|-
 +
|Therefore, &nbsp;<math>\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math>A^{-1}</math> corresponding to the eigenvalue &nbsp;<math>\frac{1}{3}.</math>
 
|}
 
|}
  
Line 48: Line 101:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See solution above.
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; See solution above.
 
|}
 
|}
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 08:27, 11 October 2017

(a) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 2, then    is an eigenvector of    What is the corresponding eigenvalue?

(b) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 3 and    is invertible, then    is an eigenvector of    What is the corresponding eigenvalue?


Foundations:  
An eigenvector    of a matrix    corresponding to the eigenvalue    is a nonzero vector such that


Solution:

(a)

Step 1:  
Since    is an eigenvector of    corresponding to the eigenvalue    we know    and
Step 2:  
Now, we have
       
Hence, since    we conclude that    is an eigenvector of    corresponding to the eigenvalue  

(b)

Step 1:  
Since    is an eigenvector of    corresponding to the eigenvalue    we know    and
Also, since    is invertible,    exists.
Step 2:  
Now, we multiply the equation from Step 1 on the left by   to obtain

       

Now, we have

       

Hence,  
Therefore,    is an eigenvector of   corresponding to the eigenvalue  


Final Answer:  
   (a)     See solution above.
   (b)     See solution above.

Return to Sample Exam