Difference between revisions of "031 Review Part 3, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 20: | Line 20: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Since <math>\vec{x}</math> is an eigenvector of <math>A</math> corresponding to the eigenvalue <math>2,</math> we know <math>\vec{x}\neq \vec{0}</math> and | ||
|- | |- | ||
| | | | ||
+ | ::<math>A\vec{x}=2\vec{x}.</math> | ||
|} | |} | ||
Line 27: | Line 30: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we have |
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{(A^3-A^2+I)\vec{x}} & = & \displaystyle{A^3\vec{x}-A^2\vec{x}+I\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{A\cdot A\cdot A\vec{x}-A\cdot A\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{A\cdot A \cdot 2\vec{x}-A\cdot 2\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2A\cdot A\vec{x}-2A\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2A\cdot 2\vec{x}-2\cdot 2\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(2\cdot 2)A\vec{x}-4\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(4)\cdot 2\vec{x}-4\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{5\vec{x}}. | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Hence, since <math>\vec{x}\ne \vec{0},</math> we conclude that <math>\vec{x}</math> is an eigenvector of <math>A^3-A^2+I</math> corresponding to the eigenvalue <math>5.</math> | ||
+ | |||
|} | |} | ||
Line 34: | Line 58: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Since <math>\vec{y}</math> is an eigenvector of <math>A</math> corresponding to the eigenvalue <math>3,</math> we know <math>\vec{y}\neq \vec{0}</math> and | ||
|- | |- | ||
| | | | ||
+ | ::<math>A\vec{y}=3\vec{y}.</math> | ||
+ | |- | ||
+ | |Also, since <math>A</math> is invertible, <math>A^{-1}</math> exists. | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Now, we multiply the equation from Step 1 on the left by <math>A^{-1}</math> to obtain | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{A^{-1}(A\vec{y})} & = & \displaystyle{A^{-1}(3\vec{y}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{3(A^{-1}\vec{y}).} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Now, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{3(A^{-1}\vec{y})} & = & \displaystyle{A^{-1}(A\vec{y})}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(A^{-1}A)\vec{y}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{I\vec{y}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\vec{y}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Hence, <math>A^{-1}\vec{y}=\frac{1}{3}\vec{y}.</math> | ||
+ | |- | ||
+ | |Therefore, <math>\vec{y}</math> is an eigenvector of <math>A^{-1}</math> corresponding to the eigenvalue <math>\frac{1}{3}.</math> | ||
|} | |} | ||
Line 48: | Line 101: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' See solution above. |
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' See solution above. |
|} | |} | ||
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 08:27, 11 October 2017
(a) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 2, then is an eigenvector of What is the corresponding eigenvalue?
(b) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 3 and is invertible, then is an eigenvector of What is the corresponding eigenvalue?
Foundations: |
---|
An eigenvector of a matrix corresponding to the eigenvalue is a nonzero vector such that |
|
Solution:
(a)
Step 1: |
---|
Since is an eigenvector of corresponding to the eigenvalue we know and |
|
Step 2: |
---|
Now, we have |
Hence, since we conclude that is an eigenvector of corresponding to the eigenvalue |
(b)
Step 1: |
---|
Since is an eigenvector of corresponding to the eigenvalue we know and |
|
Also, since is invertible, exists. |
Step 2: |
---|
Now, we multiply the equation from Step 1 on the left by to obtain |
|
Now, we have |
|
Hence, |
Therefore, is an eigenvector of corresponding to the eigenvalue |
Final Answer: |
---|
(a) See solution above. |
(b) See solution above. |