Difference between revisions of "031 Review Part 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 39: Line 39:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|We begin by putting these vectors together in a matrix. So, we have
 
|-
 
|-
 
|
 
|
 +
::<math>   
 +
    \begin{bmatrix}
 +
          1 & 3 & -2 & 5 \\
 +
          0 & 1  & -1 & 2 \\
 +
          2 & 1 & 1 & 2
 +
        \end{bmatrix}.</math>
 +
|-
 +
|Now, we row reduce this matrix. We get
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\left[\begin{array}{cccc} 
 +
          1 & 3 & -2 & 5 \\
 +
          0 & 1  & -1 & 2 \\
 +
          2 & 1 & 1 & 2
 +
        \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{cccc} 
 +
          1 & 3 & -2 & 5 \\
 +
          0 & 1  & -1 & 2 \\
 +
          0 & -5 & 5 & -8
 +
        \end{array}\right]}\\
 +
&&\\
 +
& \sim & \displaystyle{\left[\begin{array}{cccc} 
 +
          1 & 3 & -2 & 5 \\
 +
          0 & 1  & -1 & 2 \\
 +
          0 & 0 & 0 & 2
 +
        \end{array}\right]}
 +
\end{array}</math>
 
|}
 
|}
  
Line 46: Line 75:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have 3 pivots in this matrix. So, the dimension of the column space of the matrix we started with is 3.
 +
|-
 +
|Hence, the dimension of the subspace spanned by these vectors is &nbsp;<math style="vertical-align: 0px">3.</math>
 +
|-
 +
|When we row reduced the matrix, we had a column that did not contain a pivot.
 +
|-
 +
|This means we have a free variable in the system corresponding to &nbsp;<math style="vertical-align: 0px">Ax=0.</math>&nbsp;
 +
|-
 +
|So, these vectors are not linearly independent.
 
|}
 
|}
  
Line 53: Line 90:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;   
+
|&nbsp;&nbsp; &nbsp; &nbsp;  The dimension is &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; and the vectors are not linearly independent.
 
|}
 
|}
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 06:47, 11 October 2017

Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?


Foundations:  
1.  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{dim Col }A}   is the number of pivots in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A.}
2. A set of vectors  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{\vec{v_1},\vec{v_2},\ldots,\vec{v_n}\}}   is linearly independent if
the only solution to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1\vec{v_1}+x_2\vec{v_2}+\cdots+x_n\vec{v_n}=\vec{0}}   is the trivial solution.


Solution:

Step 1:  
We begin by putting these vectors together in a matrix. So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 1 & 3 & -2 & 5 \\ 0 & 1 & -1 & 2 \\ 2 & 1 & 1 & 2 \end{bmatrix}.}
Now, we row reduce this matrix. We get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\left[\begin{array}{cccc} 1 & 3 & -2 & 5 \\ 0 & 1 & -1 & 2 \\ 2 & 1 & 1 & 2 \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{cccc} 1 & 3 & -2 & 5 \\ 0 & 1 & -1 & 2 \\ 0 & -5 & 5 & -8 \end{array}\right]}\\ &&\\ & \sim & \displaystyle{\left[\begin{array}{cccc} 1 & 3 & -2 & 5 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 2 \end{array}\right]} \end{array}}

Step 2:  
Now, we have 3 pivots in this matrix. So, the dimension of the column space of the matrix we started with is 3.
Hence, the dimension of the subspace spanned by these vectors is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3.}
When we row reduced the matrix, we had a column that did not contain a pivot.
This means we have a free variable in the system corresponding to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Ax=0.}  
So, these vectors are not linearly independent.


Final Answer:  
       The dimension is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3}   and the vectors are not linearly independent.

Return to Sample Exam