Difference between revisions of "031 Review Part 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 25: Line 25:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|'''1.''' &nbsp;<math style="vertical-align: -1px">\text{dim Col }A</math>&nbsp; is the number of pivots in &nbsp;<math style="vertical-align: 0px">A.</math>
 +
|-
 +
|'''2.''' A set of vectors &nbsp;<math style="vertical-align: -4px">\{\vec{v_1},\vec{v_2},\ldots,\vec{v_n}\}</math>&nbsp; is linearly independent if
 
|-
 
|-
 
|
 
|
 +
::the only solution to &nbsp;<math style="vertical-align: -4px">x_1\vec{v_1}+x_2\vec{v_2}+\cdots+x_n\vec{v_n}=\vec{0}</math>&nbsp; is the trivial solution.
 
|}
 
|}
  

Revision as of 21:26, 10 October 2017

Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?


Foundations:  
1.    is the number of pivots in  
2. A set of vectors    is linearly independent if
the only solution to    is the trivial solution.


Solution:

Step 1:  
Step 2:  


Final Answer:  
      

Return to Sample Exam