Difference between revisions of "031 Review Part 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|'''1.''' A matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible if and only if &nbsp;<math style="vertical-align: -5px">\text{det }A\neq 0.</math>
 +
|-
 +
|'''2.''' A linear transformation &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; given by &nbsp;<math style="vertical-align: -5px">T(\vec{x})=A\vec{x}</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">m\times n</math>&nbsp; matrix
 
|-
 
|-
 
|
 
|
 +
::if and only if the columns of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; span &nbsp;<math style="vertical-align: 0px">\mathbb{R}^m.</math>
 
|}
 
|}
  

Revision as of 21:20, 10 October 2017

Let  

(a) Is    invertible? Explain.

(b) Define a linear transformation    by the formula    Is    onto? Explain.


Foundations:  
1. A matrix    is invertible if and only if  
2. A linear transformation    given by    where    is a    matrix
if and only if the columns of    span  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam