Difference between revisions of "031 Review Part 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 16: | Line 16: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |'''1.''' A matrix <math style="vertical-align: 0px">A</math> is invertible if and only if <math style="vertical-align: -5px">\text{det }A\neq 0.</math> | ||
+ | |- | ||
+ | |'''2.''' A linear transformation <math style="vertical-align: 0px">T</math> given by <math style="vertical-align: -5px">T(\vec{x})=A\vec{x}</math> where <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">m\times n</math> matrix | ||
|- | |- | ||
| | | | ||
+ | ::if and only if the columns of <math style="vertical-align: 0px">A</math> span <math style="vertical-align: 0px">\mathbb{R}^m.</math> | ||
|} | |} | ||
Revision as of 21:20, 10 October 2017
Let
(a) Is invertible? Explain.
(b) Define a linear transformation by the formula Is onto? Explain.
Foundations: |
---|
1. A matrix is invertible if and only if |
2. A linear transformation given by where is a matrix |
|
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |