Difference between revisions of "031 Review Part 3, Problem 11"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|'''1.''' An eigenvector &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; of a matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue &nbsp;<math style="vertical-align: 0px">\lambda</math>&nbsp; is a nonzero vector such that
 
|-
 
|-
 
|
 
|
 +
::<math>A\vec{x}=\lambda\vec{x}.</math>
 +
|-
 +
|'''2.''' By the Rank Theorem, if &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">m\times n</math>&nbsp; matrix, then
 +
|-
 +
|
 +
::<math>\text{rank }A+\text{dim Col }A=n.</math>
 
|}
 
|}
  

Revision as of 21:10, 10 October 2017

Suppose    is a basis of the eigenspace corresponding to the eigenvalue 0 of a    matrix  

(a) Is    an eigenvector of    If so, find the corresponding eigenvalue.

If not, explain why.

(b) Find the dimension of  


Foundations:  
1. An eigenvector    of a matrix    corresponding to the eigenvalue    is a nonzero vector such that
2. By the Rank Theorem, if    is a    matrix, then


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam