Difference between revisions of "031 Review Part 3, Problem 11"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 10: | Line 10: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| + | |- | ||
| + | |'''1.''' An eigenvector <math style="vertical-align: 0px">\vec{x}</math> of a matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue <math style="vertical-align: 0px">\lambda</math> is a nonzero vector such that | ||
|- | |- | ||
| | | | ||
| + | ::<math>A\vec{x}=\lambda\vec{x}.</math> | ||
| + | |- | ||
| + | |'''2.''' By the Rank Theorem, if <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">m\times n</math> matrix, then | ||
| + | |- | ||
| + | | | ||
| + | ::<math>\text{rank }A+\text{dim Col }A=n.</math> | ||
|} | |} | ||
Revision as of 20:10, 10 October 2017
Suppose is a basis of the eigenspace corresponding to the eigenvalue 0 of a matrix
(a) Is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{w}=\vec{u}-2\vec{v}} an eigenvector of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A?} If so, find the corresponding eigenvalue.
If not, explain why.
(b) Find the dimension of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Col }A.}
| Foundations: |
|---|
| 1. An eigenvector Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}} of a matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} corresponding to the eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} is a nonzero vector such that |
|
| 2. By the Rank Theorem, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\times n} matrix, then |
|
Solution:
(a)
| Step 1: |
|---|
| Step 2: |
|---|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |