Difference between revisions of "031 Review Part 3, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 6: | Line 6: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |An eigenvector <math style="vertical-align: 0px">\vec{x}</math> of a matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue <math style="vertical-align: 0px">\lambda</math> is a nonzero vector such that | ||
|- | |- | ||
| | | | ||
+ | ::<math>A\vec{x}=\lambda\vec{x}.</math> | ||
|} | |} | ||
Revision as of 21:05, 10 October 2017
(a) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 2, then is an eigenvector of What is the corresponding eigenvalue?
(b) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 3 and is invertible, then is an eigenvector of What is the corresponding eigenvalue?
Foundations: |
---|
An eigenvector of a matrix corresponding to the eigenvalue is a nonzero vector such that |
|
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |