Difference between revisions of "031 Review Part 3, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|The eigenvalues of a diagonal matrix are the entries on the diagonal.
 
|}
 
|}
  
Line 12: Line 12:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1:    
+
!    
 +
|-
 +
|One example of such a matrix is
 
|-
 
|-
 
|
 
|
|}
+
::<math>A=\left[\begin{array}{ccc}  
 
+
          5 & 0 & 0\\
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
            0 & -1 & 0\\
!Step 2: &nbsp;
+
            0 & 0 & 3
 +
        \end{array}\right].</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a diagonal matrix, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are the entries on the diagonal.
 
|-
 
|-
|
+
|Hence, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">5,-1,3.</math>
 
|}
 
|}
  
Line 27: Line 32:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;  
+
|&nbsp;&nbsp; &nbsp; &nbsp; One example is &nbsp;<math style="vertical-align: -31px">A=\left[\begin{array}{ccc} 
 +
          5 & 0 & 0\\
 +
            0 & -1 & 0\\
 +
            0 & 0 & 3
 +
        \end{array}\right].</math>
 
|}
 
|}
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 19:30, 10 October 2017

Give an example of a    matrix    with eigenvalues 5,-1 and 3.


Foundations:  
The eigenvalues of a diagonal matrix are the entries on the diagonal.


Solution:

 
One example of such a matrix is
Since    is a diagonal matrix, the eigenvalues of    are the entries on the diagonal.
Hence, the eigenvalues of    are  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5,-1,3.}


Final Answer:  
       One example is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=\left[\begin{array}{ccc} 5 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 3 \end{array}\right].}

Return to Sample Exam