Difference between revisions of "031 Review Part 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 21: | Line 21: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |We begin by augmenting the matrix <math style="vertical-align: 0px">A</math> with the identity matrix. Hence, we get | ||
|- | |- | ||
| | | | ||
| + | ::<math>\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
| + | 2 & 4 & 11 & 0 & 1 & 0\\ | ||
| + | 1 & 2 & 5 & 0 & 0 & 1 | ||
| + | \end{array}\right].</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, we row reduce the matrix <math style="vertical-align: 0px">A</math> to obtain the identity matrix. Hence, we have | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
| + | 2 & 4 & 11 & 0 & 1 & 0\\ | ||
| + | 1 & 2 & 5 & 0 & 0 & 1 | ||
| + | \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
| + | 0 & -2 & -5 & -2 & 1 & 0\\ | ||
| + | 0 & -1 & -3 & -1 & 0 & 1 | ||
| + | \end{array}\right]}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
| + | 0 & 1 & 3 & 1 & 0 & -1\\ | ||
| + | 0 & -2 & -5 & -2 & 1 & 0 | ||
| + | \end{array}\right]}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
| + | 0 & 1 & 3 & 1 & 0 & -1\\ | ||
| + | 0 & 0 & 1 & 0 & 1 & -1 | ||
| + | \end{array}\right]}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 0 & 1 & -8 & 8\\ | ||
| + | 0 & 1 & 0 & 1 & -3 & 2\\ | ||
| + | 0 & 0 & 1 & 0 & 1 & -1 | ||
| + | \end{array}\right]}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 0 & 0 & -2 & 1 & 2\\ | ||
| + | 0 & 1 & 0 & 1 & -3 & 2\\ | ||
| + | 0 & 0 & 1 & 0 & 1 & -1 | ||
| + | \end{array}\right].} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Therefore, the inverse of <math style="vertical-align: 0px">A</math> is | ||
|- | |- | ||
| | | | ||
| + | ::<math>\left[\begin{array}{ccc} | ||
| + | -2 & 1 & 2\\ | ||
| + | 1 & -3 & 2\\ | ||
| + | 0 & 1 & -1 | ||
| + | \end{array}\right]</math> | ||
|} | |} | ||
| Line 35: | Line 88: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | <math>A^{-1}=\left[\begin{array}{ccc} |
| + | -2 & 1 & 2\\ | ||
| + | 1 & -3 & 2\\ | ||
| + | 0 & 1 & -1 | ||
| + | \end{array}\right]</math> | ||
|} | |} | ||
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 20:19, 10 October 2017
Let Find if possible.
| Foundations: |
|---|
| To find the inverse of a matrix you augment the matrix |
| with the identity matrix and row reduce to the identity matrix. |
Solution:
| Step 1: |
|---|
| We begin by augmenting the matrix with the identity matrix. Hence, we get |
|
|
| Step 2: |
|---|
| Now, we row reduce the matrix to obtain the identity matrix. Hence, we have |
|
|
| Therefore, the inverse of is |
|
|
| Final Answer: |
|---|