Difference between revisions of "031 Review Part 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 94: Line 94:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2:  
 
!Step 2:  
 +
|-
 +
|To find a basis for &nbsp;<math>\text{Nul }A</math> we translate the matrix equation &nbsp;<math>Bx=0</math>&nbsp; back into a system of equations
 +
|-
 +
|and solve for the pivot variables.
 +
|-
 +
|Hence, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{x_1-x_3+5x_4} & = & \displaystyle{0}\\
 +
&&\\
 +
\displaystyle{-2x_2+5x_3-6x_4} & = & \displaystyle{0.}
 +
\end{array}</math>
 +
|-
 +
|Solving for the pivot variables, we have
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{x_1} & = & \displaystyle{x_3-5x_4}\\
 +
&&\\
 +
\displaystyle{x_2} & = & \displaystyle{\frac{5}{2}x_3-3x_4.}
 +
\end{array}</math>
 +
|-
 +
|Hence, the solutions to &nbsp;<math>Ax=0</math>&nbsp; are of the form
 +
|-
 +
|
 +
::<math>x_3\begin{bmatrix}
 +
          1  \\
 +
          \frac{5}{2} \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix}+x_4\begin{bmatrix}
 +
          -5  \\
 +
          -3 \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}.</math>
 +
|-
 +
|Hence, a basis for &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; is
 +
|-
 +
|
 +
::<math>\Bigg\{\begin{bmatrix}
 +
          1  \\
 +
          \frac{5}{2} \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -5  \\
 +
          -3 \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}\Bigg\}.
 +
        </math>
 
|}
 
|}
  
Line 102: Line 154:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>\text{rank }A=2</math>&nbsp; and <math style="vertical-align: -2px">\text{dim Nul }A=2.</math>
 +
|-
 +
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; A basis for &nbsp;<math>\text{Col }A</math>&nbsp; is <math>\Bigg\{\begin{bmatrix}
 +
          1  \\
 +
          -1 \\
 +
          5
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -4  \\
 +
          2 \\
 +
          -6
 +
        \end{bmatrix}\Bigg\}.
 +
        </math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
+
|&nbsp; &nbsp; &nbsp; &nbsp; and a basis for &nbsp;<math>\text{Nul }A</math>&nbsp; is <math>\Bigg\{\begin{bmatrix}
 +
          1  \\
 +
          \frac{5}{2} \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -5  \\
 +
          -3 \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}\Bigg\}.
 +
        </math>
 
|}
 
|}
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:23, 10 October 2017

Consider the matrix    and assume that it is row equivalent to the matrix

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B= \begin{bmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}.}

(a) List rank  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{dim Nul }A.}

(b) Find bases for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Col }A}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Nul }A.}   Find an example of a nonzero vector that belongs to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Col }A,}   as well as an example of a nonzero vector that belongs to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Nul }A.}


Foundations:  
1. For a matrix  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A,}   the rank of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{rank }A=\text{dim Col }A.}
2.  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Col }A}   is the vector space spanned by the columns of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A.}
3.  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Nul }A}   is the vector space containing all solutions to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Ax=0.}


Solution:

(a)

Step 1:  
From the matrix  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B,}   we see that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   contains two pivots.
Therefore,

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\text{rank }A} & = & \displaystyle{\text{dim Col }A}\\ &&\\ & = & \displaystyle{2.} \end{array}}

Step 2:  
By the Rank Theorem, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{4} & = & \displaystyle{\text{rank }A+\text{dim Nul }A}\\ &&\\ & = & \displaystyle{2+\text{dim Nul }A.} \end{array}}

Hence,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{dim Nul }A=2.}

(b)

Step 1:  
From the matrix  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B,}   we see that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   contains pivots in Column 1 and 2.
So, to obtain a basis for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Col }A,}   we select the corresponding columns from  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A.}
Hence, a basis for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Col }A}   is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Bigg\{\begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} -4 \\ 2 \\ -6 \end{bmatrix}\Bigg\}. }
Step 2:  
To find a basis for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Nul }A} we translate the matrix equation  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Bx=0}   back into a system of equations
and solve for the pivot variables.
Hence, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{x_1-x_3+5x_4} & = & \displaystyle{0}\\ &&\\ \displaystyle{-2x_2+5x_3-6x_4} & = & \displaystyle{0.} \end{array}}

Solving for the pivot variables, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{x_1} & = & \displaystyle{x_3-5x_4}\\ &&\\ \displaystyle{x_2} & = & \displaystyle{\frac{5}{2}x_3-3x_4.} \end{array}}

Hence, the solutions to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Ax=0}   are of the form
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_3\begin{bmatrix} 1 \\ \frac{5}{2} \\ 1 \\ 0 \end{bmatrix}+x_4\begin{bmatrix} -5 \\ -3 \\ 0 \\ 1 \end{bmatrix}.}
Hence, a basis for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Nul }A}   is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Bigg\{\begin{bmatrix} 1 \\ \frac{5}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ -3 \\ 0 \\ 1 \end{bmatrix}\Bigg\}. }


Final Answer:  
   (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{rank }A=2}   and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{dim Nul }A=2.}
   (b)     A basis for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Col }A}   is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Bigg\{\begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} -4 \\ 2 \\ -6 \end{bmatrix}\Bigg\}. }
        and a basis for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Nul }A}   is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Bigg\{\begin{bmatrix} 1 \\ \frac{5}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ -3 \\ 0 \\ 1 \end{bmatrix}\Bigg\}. }

Return to Sample Exam