Difference between revisions of "031 Review Part 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|'''1.''' For a matrix &nbsp;<math style="vertical-align: -4px">A,</math>&nbsp; the rank of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>\text{rank }A=\text{dim Col }A.</math>
 +
|-
 +
|'''2.''' &nbsp;<math style="vertical-align: -1px">\text{Col }A</math>&nbsp; is the vector space spanned by the columns of &nbsp;<math style="vertical-align: 0px">A.</math>
 +
|-
 +
|'''3.''' &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; is the vector space containing all solutions to &nbsp;<math style="vertical-align: 0px">Ax=0.</math>
 
|}
 
|}
  

Revision as of 10:14, 10 October 2017

Consider the matrix    and assume that it is row equivalent to the matrix

(a) List rank    and  

(b) Find bases for    and    Find an example of a nonzero vector that belongs to    as well as an example of a nonzero vector that belongs to  


Foundations:  
1. For a matrix    the rank of    is
2.    is the vector space spanned by the columns of  
3.    is the vector space containing all solutions to  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam