Difference between revisions of "031 Review Part 3, Problem 11"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">Suppose <math style="vertical-align: -5px">\{\vec{u},\vec{v}\}</math> is a basis of the eigenspace corresponding to the eigenvalue 0 of a <math style="vertical-align: 0px">5\times 5</math> matrix <math style="vertical-align: 0px">A.</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <span class="exam">(a) Is <math style="vertical-align: 0px">\vec{w}=\vec{u}-2\vec{v}</math> an eigenvector of <math style="vertical-align: 0px">A?</math> If so, find the corresponding eigenvalue. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <span class="exam">(a) | ||
− | <span class="exam"> | + | <span class="exam">If not, explain why. |
+ | |||
+ | <span class="exam">(b) Find the dimension of <math style="vertical-align: -1px">\text{Col }A.</math> | ||
Revision as of 19:32, 9 October 2017
Suppose is a basis of the eigenspace corresponding to the eigenvalue 0 of a matrix
(a) Is an eigenvector of If so, find the corresponding eigenvalue.
If not, explain why.
(b) Find the dimension of
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |