Difference between revisions of "031 Review Part 3, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">Let <math style="vertical-align: -20px">A= |
\begin{bmatrix} | \begin{bmatrix} | ||
− | 1 | + | 5 & 1 \\ |
− | + | 0 & 5 | |
− | + | \end{bmatrix}.</math> | |
− | \end{bmatrix}</math> | ||
− | + | <span class="exam">(a) Find a basis for the eigenspace(s) of <math style="vertical-align: 0px">A.</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <span class="exam">(a) | ||
− | <span class="exam">(b) | + | <span class="exam">(b) Is the matrix <math style="vertical-align: 0px">A</math> diagonalizable? Explain. |
Revision as of 19:23, 9 October 2017
Let
(a) Find a basis for the eigenspace(s) of
(b) Is the matrix diagonalizable? Explain.
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |