Difference between revisions of "031 Review Part 2"

From Grad Wiki
Jump to navigation Jump to search
Line 23: Line 23:
  
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
  
 
== [[031_Review Part 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[031_Review Part 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
Line 48: Line 47:
 
           2
 
           2
 
         \end{bmatrix}</math>
 
         \end{bmatrix}</math>
 
  
 
== [[031_Review Part 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
== [[031_Review Part 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
Line 88: Line 86:
 
           3  
 
           3  
 
         \end{bmatrix}</math>&nbsp; in the range of &nbsp;<math style="vertical-align: 0px">T?</math>&nbsp; Explain.
 
         \end{bmatrix}</math>&nbsp; in the range of &nbsp;<math style="vertical-align: 0px">T?</math>&nbsp; Explain.
 
  
 
== [[031_Review Part 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
== [[031_Review Part 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
Line 96: Line 93:
  
 
<span class="exam">(b) &nbsp;<math style="vertical-align: -7px">\text{det }(A^TB^{-1})</math>
 
<span class="exam">(b) &nbsp;<math style="vertical-align: -7px">\text{det }(A^TB^{-1})</math>
 
  
 
== [[031_Review Part 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
== [[031_Review Part 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
Line 155: Line 151:
  
 
<span class="exam">If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is an &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrix such that &nbsp;<math style="vertical-align: -4px">AA^T=I,</math>&nbsp; what are the possible values of &nbsp;<math style="vertical-align: 0px">\text{det }A?</math>
 
<span class="exam">If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is an &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrix such that &nbsp;<math style="vertical-align: -4px">AA^T=I,</math>&nbsp; what are the possible values of &nbsp;<math style="vertical-align: 0px">\text{det }A?</math>
 
  
 
== [[031_Review Part 2,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
 
== [[031_Review Part 2,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==

Revision as of 18:19, 9 October 2017

This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Consider the matrix    and assume that it is row equivalent to the matrix

(a) List rank  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{dim Nul }A.}

(b) Find bases for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Col }A}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Nul }A.}   Find an example of a nonzero vector that belongs to    as well as an example of a nonzero vector that belongs to  

 Problem 2 

Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?

 Problem 3 

Let  

(a) Is    invertible? Explain.

(b) Define a linear transformation    by the formula    Is    onto? Explain.

 Problem 4 

Suppose    is a linear transformation given by the formula

(a) Find the standard matrix for  

(b) Let    Find  

(c) Is    in the range of    Explain.

 Problem 5 

Let    and    be  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 6\times 6}   matrices with    and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}B=5.}   Use properties of determinants to compute:

(a)  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{det }}3A}

(b)  

 Problem 6 

Let    and  

(a) Find a unit vector in the direction of  

(b) Find the distance between    and  

(c) Let    Compute the orthogonal projection of    onto  

 Problem 7 

(a) Let    be a transformation given by

Determine whether    is a linear transformation. Explain.

(b) Let    and    Find    and  

 Problem 8 

Let    Find    if possible.

 Problem 9 

If    is an    matrix such that    what are the possible values of  

 Problem 10 

(a) Suppose a    matrix  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   has 4 pivot columns. What is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{dim Nul }A?}   Is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Col }A=\mathbb{R}^4?}   Why or why not?

(b) If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   is a  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7\times 5}   matrix, what is the smallest possible dimension of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Nul }A?}

 Problem 11 

Consider the following system of equations.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1+kx_2=1}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3x_1+5x_2=2k}

Find all real values of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k}   such that the system has only one solution.