Difference between revisions of "031 Review Part 2, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">(a) Let <math style="vertical-align: -2px">T:\mathbb{R}^2\rightarrow \mathbb{R}^2</math> be a transformation given by |
+ | |||
+ | ::<math>T\bigg( | ||
+ | \begin{bmatrix} | ||
+ | x \\ | ||
+ | y | ||
+ | \end{bmatrix} | ||
+ | \bigg)= | ||
+ | \begin{bmatrix} | ||
+ | 1-xy \\ | ||
+ | x+y | ||
+ | \end{bmatrix}.</math> | ||
+ | |||
+ | <span class="exam">Determine whether <math style="vertical-align: 0px">T</math> is a linear transformation. Explain. | ||
+ | |||
+ | <span class="exam">(b) Let <math style="vertical-align: -19px">A= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | 1 & - | + | 1 & -3 & 0 \\ |
− | + | -4 & 1 &1 | |
− | + | \end{bmatrix}</math> and <math style="vertical-align: -32px">B= | |
− | \end{bmatrix}</math> and | ||
− | |||
− | |||
\begin{bmatrix} | \begin{bmatrix} | ||
− | + | 2 & 1\\ | |
− | 0 | + | 1 & 0 \\ |
− | + | -1 & 1 | |
− | \end{bmatrix}.</math> | + | \end{bmatrix}.</math> Find <math style="vertical-align: -4px">AB,~BA^T</math> and <math style="vertical-align: 0px">A-B^T.</math> |
− | |||
− | |||
− | |||
− | |||
Revision as of 19:16, 9 October 2017
(a) Let be a transformation given by
Determine whether is a linear transformation. Explain.
(b) Let and Find and
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |