Difference between revisions of "031 Review Part 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=     
+
<span class="exam">(a) Let &nbsp;<math style="vertical-align: -2px">T:\mathbb{R}^2\rightarrow \mathbb{R}^2</math>&nbsp; be a transformation given by
 +
 
 +
::<math>T\bigg(
 +
\begin{bmatrix}
 +
          x \\
 +
          y
 +
        \end{bmatrix}
 +
        \bigg)=
 +
\begin{bmatrix}
 +
          1-xy \\
 +
          x+y
 +
        \end{bmatrix}.</math>
 +
 
 +
<span class="exam">Determine whether &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; is a linear transformation. Explain.
 +
 
 +
<span class="exam">(b) Let &nbsp;<math style="vertical-align: -19px">A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
           1 & -4 & 9 & -7 \\
+
           1 & -3 & 0 \\
           -1 & 2  & -4 & 1 \\
+
           -4 & 1 &1
          5 & -6 & 10 & 7
+
         \end{bmatrix}</math>&nbsp; and &nbsp;<math style="vertical-align: -32px">B=     
         \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix
 
 
 
::<math>B=     
 
 
     \begin{bmatrix}
 
     \begin{bmatrix}
           1 & 0 & -1 & 5 \\
+
           2 & 1\\
           0 & -2  & 5 & -6 \\
+
           1 & 0 \\
           0 & 0 & 0 & 0
+
           -1 & 1
         \end{bmatrix}.</math>    
+
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: -4px">AB,~BA^T</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">A-B^T.</math>
   
 
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
 
 
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
  
  

Revision as of 19:16, 9 October 2017

(a) Let    be a transformation given by

Determine whether    is a linear transformation. Explain.

(b) Let    and    Find    and  


Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam