Difference between revisions of "031 Review Part 2, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam"> Let <math>\vec{v}=\begin{bmatrix} |
| − | + | -1 \\ | |
| − | 1 | + | 3 \\ |
| − | + | 0 | |
| − | + | \end{bmatrix}</math> and <math>\vec{y}=\begin{bmatrix} | |
| − | \end{bmatrix}</math> and | + | 2 \\ |
| − | + | 0 \\ | |
| − | + | 5 | |
| − | + | \end{bmatrix}.</math> | |
| − | + | ||
| − | 0 | + | <span class="exam">(a) Find a unit vector in the direction of <math style="vertical-align: 0px">\vec{v}.</math> |
| − | + | ||
| − | \end{bmatrix}.</math> | + | <span class="exam">(b) Find the distance between <math style="vertical-align: 0px">\vec{v}</math> and <math style="vertical-align: -3px">\vec{y}.</math> |
| − | + | ||
| − | <span class="exam">(a) | + | <span class="exam">(c) Let <math style="vertical-align: -5px">L=\text{Span }\{\vec{v}\}.</math> Compute the orthogonal projection of <math style="vertical-align: -3px">\vec{y}</math> onto <math style="vertical-align: 0px">L.</math> |
| − | |||
| − | <span class="exam">(b) Find | ||
| Line 42: | Line 40: | ||
'''(b)''' | '''(b)''' | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 1: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 2: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | '''(c)''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 18:10, 9 October 2017
Let and
(a) Find a unit vector in the direction of
(b) Find the distance between and
(c) Let Compute the orthogonal projection of onto
| Foundations: |
|---|
Solution:
(a)
| Step 1: |
|---|
| Step 2: |
|---|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
(c)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |