Difference between revisions of "031 Review Part 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=  
+
<span class="exam"> Let &nbsp;<math>\vec{v}=\begin{bmatrix}
    \begin{bmatrix}
+
           -1 \\
           1 & -4 & 9 & -7 \\
+
           3 \\
           -1 & 2  & -4 & 1 \\
+
           0
           5 & -6 & 10 & 7
+
         \end{bmatrix}</math>&nbsp; and &nbsp;<math>\vec{y}=\begin{bmatrix}
         \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix
+
           2 \\
 
+
           0 \\
::<math>B=  
+
           5
    \begin{bmatrix}
+
         \end{bmatrix}.</math>
           1 & 0 & -1 & 5 \\
+
       
           0 & -2  & 5 & -6 \\
+
<span class="exam">(a) Find a unit vector in the direction of &nbsp;<math style="vertical-align: 0px">\vec{v}.</math>
           0 & 0 & 0 & 0
+
       
         \end{bmatrix}.</math>    
+
<span class="exam">(b) Find the distance between &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">\vec{y}.</math>
   
+
       
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
+
<span class="exam">(c) Let &nbsp;<math style="vertical-align: -5px">L=\text{Span }\{\vec{v}\}.</math>&nbsp; Compute the orthogonal projection of &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; onto &nbsp;<math style="vertical-align: 0px">L.</math>
 
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
  
  
Line 42: Line 40:
  
 
'''(b)'''
 
'''(b)'''
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 +
|-
 +
|
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|
 +
|}
 +
 +
'''(c)'''
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 19:10, 9 October 2017

Let    and  

(a) Find a unit vector in the direction of  

(b) Find the distance between    and  

(c) Let    Compute the orthogonal projection of    onto  


Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam