Difference between revisions of "031 Review Part 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">Let |
+ | <math>B= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | 1 & -4 & | + | 1 & -2 & 3 & 4\\ |
− | + | 0 & 3 &0 &0\\ | |
− | + | 0 & 5 & 1 & 2\\ | |
− | \end{bmatrix}</math> | + | 0 & -1 & 3 & 6 |
+ | \end{bmatrix}. | ||
+ | </math> | ||
+ | |||
+ | <span class="exam">(a) Is <math style="vertical-align: 0px">B</math> invertible? Explain. | ||
− | + | <span class="exam">(b) Define a linear transformation <math style="vertical-align: 0px">T</math> by the formula <math style="vertical-align: -5px">T(\vec{x})=B\vec{x}.</math> Is <math style="vertical-align: 0px">T</math> onto? Explain. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <span class="exam">(a | ||
− | |||
− | |||
Revision as of 19:08, 9 October 2017
Let
(a) Is invertible? Explain.
(b) Define a linear transformation by the formula Is onto? Explain.
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |