Difference between revisions of "031 Review Part 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=   
+
<span class="exam"> Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?
    \begin{bmatrix}
 
          1 & -4 & 9 & -7 \\
 
          -1 & 2  & -4 & 1 \\
 
          5 & -6 & 10 & 7
 
        \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix
 
  
::<math>B=   
+
::<math>\begin{bmatrix}
    \begin{bmatrix}
+
           1 \\
           1 & 0 & -1 & 5 \\
+
           0 \\
           0 & -2  & 5 & -6 \\
+
           2
           0 & 0 & 0 & 0
+
         \end{bmatrix},
         \end{bmatrix}.</math>     
+
        \begin{bmatrix}
   
+
          3  \\
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
+
          1 \\
 
+
          1
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
+
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -2  \\
 +
          -1 \\
 +
          1
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          5  \\
 +
          2 \\
 +
          2
 +
        \end{bmatrix}</math>
  
  

Revision as of 19:07, 9 October 2017

Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?


Foundations:  


Solution:

Step 1:  
Step 2:  


Final Answer:  
      

Return to Sample Exam