Difference between revisions of "031 Review Part 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
!Solution:    
 
!Solution:    
 
|-
 
|-
|First, we switch to the limit to <math style="vertical-align: 0px">x</math> so that we can use L'Hopital's rule.
+
|By the Rank Theorem, we have  
|-
 
|So, we have
 
 
|-
 
|-
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
\displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\
+
\displaystyle{5} & = & \displaystyle{\text{dim Col }A+\text{dim Nul }A}\\
&&\\
 
& \overset{L'H}{=} & \displaystyle{\frac{-4}{10}}\\
 
 
&&\\
 
&&\\
& = & \displaystyle{-\frac{2}{5}}.
+
& = & \displaystyle{\text{dim Col }A+2.}
 
\end{array}</math>
 
\end{array}</math>
 +
|-
 +
|Hence, &nbsp;<math style="vertical-align: -2px">\text{dim Col }A=3.</math>
 +
|-
 +
|This tells us that &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; has three pivots.
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">3\times 5</math>&nbsp; matrix,
 +
|-
 +
|&nbsp;<math style="vertical-align: 0px">A</math>&nbsp; has a pivot in every row.
 +
|-
 +
|Therefore, &nbsp;<math style="vertical-align: 0px">A\vec{x}=\vec{b}</math>&nbsp; is consistent for all &nbsp;<math style="vertical-align: 0px">\vec{b}</math>&nbsp; in &nbsp;<math style="vertical-align: 0px">\mathbb{R}^3.</math>
 +
|-
 +
|So, the statement is true.
 
|}
 
|}
  
Line 21: Line 29:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp; False
+
|&nbsp;&nbsp; &nbsp; &nbsp; TRUE
 
|}
 
|}
 
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:01, 9 October 2017

True or false: If    is a    matrix and    then    is consistent for all    in  

Solution:  
By the Rank Theorem, we have

       

Hence,  
This tells us that    has three pivots.
Since    is a    matrix,
   has a pivot in every row.
Therefore,    is consistent for all    in  
So, the statement is true.
Final Answer:  
       TRUE

Return to Sample Exam