Difference between revisions of "031 Review Part 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">True or false: If all the entries of a  <math style="vertical-align: 0px">7\times 7</math>  matrix  <math style="vertical-align: 0px">A</math...")
 
Line 1: Line 1:
<span class="exam">True or false: If all the entries of a &nbsp;<math style="vertical-align: 0px">7\times 7</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">7,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">\text{det }A</math>&nbsp; must be &nbsp;<math style="vertical-align: 0px">7^7.</math>
+
<span class="exam">True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: -1px">4\times 4</math>&nbsp; matrix with characteristic equation &nbsp;<math style="vertical-align: -5px">\lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 13:14, 9 October 2017

True or false: If    is a    matrix with characteristic equation    then    is diagonalizable.

Solution:  
First, we switch to the limit to so that we can use L'Hopital's rule.
So, we have

       

Final Answer:  
       False

Return to Sample Exam