Difference between revisions of "031 Review Part 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">True or false: If all the entries of a  <math style="vertical-align: 0px">7\times 7</math>  matrix  <math style="vertical-align: 0px">A</math...")
 
Line 1: Line 1:
<span class="exam">True or false: If all the entries of a &nbsp;<math style="vertical-align: 0px">7\times 7</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">7,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">\text{det }A</math>&nbsp; must be &nbsp;<math style="vertical-align: 0px">7^7.</math>
+
<span class="exam"> True or false: If a matrix &nbsp;<math style="vertical-align: 0px">A^2</math>&nbsp; is diagonalizable, then the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; must be diagonalizable as well.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 12:14, 9 October 2017

True or false: If a matrix    is diagonalizable, then the matrix  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   must be diagonalizable as well.

Solution:  
First, we switch to the limit to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} so that we can use L'Hopital's rule.
So, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\frac{-4}{10}}\\ &&\\ & = & \displaystyle{-\frac{2}{5}}. \end{array}}

Final Answer:  
       False

Return to Sample Exam