Difference between revisions of "Product Rule and Quotient Rule"

From Grad Wiki
Jump to navigation Jump to search
 
(18 intermediate revisions by one other user not shown)
Line 2: Line 2:
 
Taking the derivatives of <em>simple functions</em> (i.e. polynomials) is easy using the power rule.  
 
Taking the derivatives of <em>simple functions</em> (i.e. polynomials) is easy using the power rule.  
  
For example, if <math>f(x)=x^3+2x^2+5x+3,</math> then <math>f'(x)=3x^2+4x+5.</math>
+
For example, if &nbsp;<math style="vertical-align: -5px">f(x)=x^3+2x^2+5x+3,</math>&nbsp; then &nbsp;<math style="vertical-align: -5px">f'(x)=3x^2+4x+5.</math>
  
 
But, what about more <em>complicated functions</em>?  
 
But, what about more <em>complicated functions</em>?  
  
For example, what is <math>f'(x)</math> when <math>f(x)=\sin x \cos x?</math>
+
For example, what is &nbsp;<math style="vertical-align: -5px">f'(x)</math>&nbsp; when &nbsp;<math style="vertical-align: -5px">f(x)=\sin x \cos x?</math>
  
Or what about <math>g'(x)</math> when <math>g(x)=\frac{x}{x+1}?</math>
+
Or what about &nbsp;<math style="vertical-align: -5px">g'(x)</math>&nbsp; when &nbsp;<math style="vertical-align: -15px">g(x)=\frac{x}{x+1}?</math>
  
Notice <math>f(x)</math> is a product and <math>g(x)</math> is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
+
Notice &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is a product, and &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
  
 +
'''Product Rule'''
  
 +
Let &nbsp;<math style="vertical-align: -5px">h(x)=f(x)g(x).</math>&nbsp; Then,
  
 +
::<math>h'(x)=f(x)g'(x)+f'(x)g(x).</math>
 +
 +
'''Quotient Rule'''
 +
 +
Let &nbsp;<math style="vertical-align: -19px">h(x)=\frac{f(x)}{g(x)}.</math>&nbsp; Then,
 +
 +
::<math>h'(x)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}.</math>
  
 
==Warm-Up==
 
==Warm-Up==
Evaluate the following indefinite integrals.
+
Calculate &nbsp;<math style="vertical-align: -5px">f'(x).</math>
  
'''1)''' &nbsp; <math>\int (8x+5)e^{4x^2+5x+3}~dx</math>
+
'''1)''' &nbsp; <math style="vertical-align: -7px">f(x)=(x^2+x+1)(x^3+2x^2+4)</math>
  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -3px">u=4x^2+5x+3.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -5px">du=(8x+5)~dx.</math>
+
|Using the Product Rule, we have
 +
|-
 +
|
 +
::<math>f'(x)=(x^2+x+1)(x^3+2x^2+4)'+(x^2+x+1)'(x^3+2x^2+4).</math>  
 +
|-
 +
|Then, using the Power Rule, we have
 
|-
 
|-
 +
|
 +
::<math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4).</math>
 
|-
 
|-
|Plugging these into our integral, we get &nbsp;<math style="vertical-align: -14px">\int e^u~du,</math>&nbsp; which we know how to integrate.
 
 
|-
 
|-
|So, we get
+
|<u>NOTE:</u> It is not necessary to use the Product Rule to calculate the derivative of this function.
 +
|-
 +
|You can distribute the terms and then use the Power Rule.
 +
|-
 +
|In this case, we have
 
|-
 
|-
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int (8x+5)e^{4x^2+5x+3}~dx} & = & \displaystyle{\int e^u~du}\\
+
\displaystyle{f(x)} & = & \displaystyle{(x^2+x+1)(x^3+2x^2+4)}\\
 
&&\\
 
&&\\
& = & \displaystyle{e^u+C}\\
+
& = & \displaystyle{x^2(x^3+2x^2+4)+x(x^3+2x^2+4)+1(x^3+2x^2+4)}\\
 
&&\\
 
&&\\
& = & \displaystyle{e^{4x^2+5x+3}+C.} \\
+
& = & \displaystyle{x^5+2x^4+4x^2+x^4+2x^3+4x+x^3+2x^2+4} \\
 +
&&\\
 +
& = & \displaystyle{x^5+3x^4+3x^3+6x^2+4x+4.}
 
\end{array}</math>
 
\end{array}</math>
 +
|-
 +
|Now, using the Power Rule, we get
 +
|-
 +
|
 +
::<math>f'(x)=5x^4+12x^3+9x^2+12x+4.</math>
 +
|-
 +
|In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule.
 
|}
 
|}
  
Line 43: Line 71:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>e^{4x^2+5x+3}+C</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4)</math>
 
|-
 
|-
 +
|or equivalently
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=x^5+3x^4+3x^3+6x^2+4x+4</math>
 
|}
 
|}
  
'''2)''' &nbsp; <math>\int\frac{x}{\sqrt{1-2x^2}}~dx</math>
+
'''2)''' &nbsp; <math style="vertical-align: -14px">f(x)=\frac{x^2+x^3}{x}</math>
  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -2px">u=1-2x^2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -2px">du=-4x~dx.</math>&nbsp; Hence, &nbsp;<math style="vertical-align: -15px">\frac{du}{-4}=x~dx.</math>&nbsp;
+
|
|-
+
Using the Quotient Rule, we have
|Plugging these into our integral, we get
 
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
::<math>f'(x)=\frac{x(x^2+x^3)'-(x^2+x^3)(x)'}{x^2}.</math>
\displaystyle{\int\frac{x}{\sqrt{1-2x^2}}~dx} & = & \displaystyle{\int -\frac{1}{4}~u^{-\frac{1}{2}}~du}\\
 
&&\\
 
& = & \displaystyle{-\frac{1}{2}u^{\frac{1}{2}}+C}\\
 
&&\\
 
& = & \displaystyle{-\frac{1}{2}\sqrt{1-2x^2}+C.} \\
 
\end{array}</math>
 
 
|-
 
|-
|}
+
|Then, using the Power Rule, we have
 
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>-\frac{1}{2}\sqrt{1-2x^2}+C</math>
+
|
 +
::<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)(1)}{x^2}.</math>
 
|-
 
|-
|}
+
|<u>NOTE:</u> It is not necessary to use the Quotient Rule to calculate the derivative of this function.
 
 
'''3)''' &nbsp; <math>\int\frac{\sin(\ln x)}{x}~dx</math>
 
 
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -6px">u=\ln(x).</math>&nbsp; Then, &nbsp;<math style="vertical-align: -14px">du=\frac{1}{x}~dx.</math>
+
|You can divide and then use the Power Rule.
 
|-
 
|-
|Plugging these into our integral, we get
+
|In this case, we have
 
|-
 
|-
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int\frac{\sin(\ln x)}{x}~dx} & = & \displaystyle{\int \sin(u)~du}\\
+
\displaystyle{f(x)} & = & \displaystyle{\frac{x^2+x^3}{x}}\\
 
&&\\
 
&&\\
& = & \displaystyle{-\cos(u)+C}\\
+
& = & \displaystyle{\frac{x^2}{x}+\frac{x^3}{x}}\\
 
&&\\
 
&&\\
& = & \displaystyle{-\cos(\ln x)+C.} \\
+
& = & \displaystyle{x+x^2.} \\
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
 +
|Now, using the Power Rule, we get
 +
|-
 +
|
 +
::<math>f'(x)=1+2x.</math>
 
|}
 
|}
  
Line 97: Line 118:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>-\cos(\ln x)+C</math>
+
||&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)}{x^2}</math>
 +
|-
 +
|or equivalently
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=1+2x</math>
 +
 
 
|-
 
|-
 
|}
 
|}
  
'''4)''' &nbsp; <math>\int xe^{x^2}~dx</math>
+
'''3)''' &nbsp; <math style="vertical-align: -14px">f(x)=\frac{\sin x}{\cos x}</math>
  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -1px">u=x^2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=2x~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">\frac{du}{2}=x~dx.</math>&nbsp;
+
|Using the Quotient Rule, we get
|-
 
|Plugging these into our integral, we get
 
 
|-
 
|-
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int xe^{x^2}~dx} & = & \displaystyle{\int \frac{1}{2}e^u~du}\\
+
\displaystyle{f'(x)} & = & \displaystyle{\frac{\cos x(\sin x)'-\sin x (\cos x)'}{(\cos x)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\cos x(\cos x)-\sin x (-\sin x)}{(\cos x)^2}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{2}e^u+C}\\
+
& = & \displaystyle{\frac{\cos^2 x+\sin^2 x}{\cos^2 x}} \\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{2}e^{x^2}+C.} \\
+
& = & \displaystyle{\frac{1}{\cos^2 x}}\\
 +
&&\\
 +
& = & \displaystyle{\sec^2 x}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
 +
|since &nbsp;<math style="vertical-align: -2px">\sin^2 x+\cos^2 x=1</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">\sec x=\frac{1}{\cos x}.</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -14px">\frac{\sin x}{\cos x}=\tan x,</math>&nbsp; we have
 +
|-
 +
|
 +
::<math>\frac{d}{dx}{\tan x}=\sec^2 x.</math>
 
|}
 
|}
  
Line 124: Line 158:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{2}e^{x^2}+C</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=\sec^2 x</math>
 
|-
 
|-
 
|}
 
|}
Line 130: Line 164:
 
== Exercise 1 ==
 
== Exercise 1 ==
  
Evaluate the indefinite integral &nbsp;<math style="vertical-align: -16px">\int \frac{2}{y^2+4}~dy.</math>
+
Calculate the derivative of &nbsp;<math style="vertical-align: -13px">f(x)=\frac{1}{x^2}(\csc x-4).</math>
 +
 
 +
First, we need to know the derivative of &nbsp;<math style="vertical-align: 0px">\csc x.</math>&nbsp; Recall
  
First, we factor out &nbsp;<math style="vertical-align: -1px">4</math>&nbsp; out of the denominator.
+
::<math>\csc x =\frac{1}{\sin x}.</math>
  
So, we have
+
Now, using the Quotient Rule, we have
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{4}\int \frac{2}{\frac{y^2}{4}+1}~dy}\\
+
\displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{2}\int \frac{1}{(\frac{y}{2})^2+1}~dy.}\\
+
& = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\
 +
&&\\
 +
& = & \displaystyle{-\csc x \cot x.}
 
\end{array}</math>
 
\end{array}</math>
  
Now, we use &nbsp;<math style="vertical-align: -1px">u</math>-substitution. Let &nbsp;<math>u=\frac{y}{2}.</math>
+
Using the Product Rule and Power Rule, we have
 
 
Then, &nbsp;<math style="vertical-align: -14px">du=\frac{1}{2}~dy</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">2~du=dy.</math>
 
 
 
Plugging these into our integral, we get
 
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{2}\int \frac{2}{u^2+1}~du}\\
+
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\int \frac{1}{u^2+1}~du}\\
+
& = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\arctan(u)+C}\\
+
& = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.}
&&\\
 
& = & \displaystyle{\arctan\bigg(\frac{y}{2}\bigg)+C.}\\
 
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>\int \frac{2}{y^2+4}~dy=\arctan\bigg(\frac{y}{2}\bigg)+C.</math>
+
::<math>f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.</math>
  
 
== Exercise 2 ==
 
== Exercise 2 ==
  
Evaluate the indefinite integral &nbsp;<math style="vertical-align: -17px">\int \frac{\cos(x)}{(5+\sin x)^2}~dx.</math>
+
Calculate the derivative of &nbsp;<math style="vertical-align: -5px">g(x)=2x\sin x \sec x.</math>
  
Let &nbsp;<math style="vertical-align: -5px">u=5+\sin(x).</math>&nbsp; Then, &nbsp;<math style="vertical-align: -5px">u=\cos(x)~dx.</math>
+
Notice that the function &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is the product of three functions.  
  
Plugging these into our integral, we get
+
We start by grouping two of the functions together. So, we have &nbsp;<math style="vertical-align: -5px">g(x)=(2x\sin x)\sec x.</math>
 +
 
 +
Using the Product Rule, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \frac{\cos(x)}{(5+\sin x)^2}~dx} & = & \displaystyle{\int \frac{1}{u^2}~du}\\
+
\displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\
 
&&\\
 
&&\\
& = & \displaystyle{-\frac{1}{u}+C}\\
+
& = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.}
 +
\end{array}</math>
 +
 
 +
Now, we need to use the Product Rule again. So,
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\
 
&&\\
 
&&\\
& = & \displaystyle{-\frac{1}{5+\sin(x)}+C.}
+
& = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>\int \frac{\cos(x)}{(5+\sin x)^2}~dx=-\frac{1}{5+\sin(x)}+C.</math>
+
::<math>g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.</math>
 +
 
 +
But, there is another way to do this problem. Notice
  
== Exercise 3 ==
+
::<math>\begin{array}{rcl}
 +
\displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\
 +
&&\\
 +
& = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\
 +
&&\\
 +
& = & \displaystyle{2x\tan x.}
 +
\end{array}</math>
  
Evaluate the indefinite integral &nbsp;<math style="vertical-align: -16px">\int \frac{x+5}{2x+3}~dx.</math>
+
Now, you would only need to use the Product Rule once instead of twice.
  
Here, the substitution is not obvious.
+
== Exercise 3 ==
  
Let &nbsp;<math style="vertical-align: -3px">u=2x+3.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=2~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{2}=dx.</math>
+
Calculate the derivative of &nbsp;<math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math>
  
Now, we need a way of getting rid of &nbsp;<math style="vertical-align: -2px">x+5</math>&nbsp; in the numerator.
+
Using the Quotient Rule, we have
  
Solving for &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in the first equation, we get &nbsp;<math style="vertical-align: -14px">x=\frac{1}{2}u-\frac{3}{2}.</math>  
+
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math>
  
Plugging these into our integral, we get
+
Now, we need to use the Product Rule. So, we have
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \frac{x+5}{2x+3}~dx} & = & \displaystyle{\int \frac{(\frac{1}{2}u-\frac{3}{2})+5}{2u}~du}\\
+
\displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\
&&\\
 
& = & \displaystyle{\frac{1}{2}\int \frac{\frac{1}{2}u+\frac{7}{2}}{u}~du}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{4}\int \frac{u+7}{u}~du}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{4}\int 1+\frac{7}{u}~du}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{4}(u+7\ln|u|)+C}\\
 
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{4}(2x+3+7\ln|2x+3|)+C.}\\
+
& = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we get
 
So, we get
::<math>\int \frac{x+5}{2x+3}~dx=\frac{1}{4}(2x+3+7\ln|2x+3|)+C.</math>
+
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math>
  
 
== Exercise 4 ==
 
== Exercise 4 ==
  
Evaluate the indefinite integral &nbsp;<math style="vertical-align: -14px">\int \frac{x^2+4}{x+2}~dx.</math>
+
Calculate the derivative of  &nbsp;<math style="vertical-align: -14px">f(x)=\frac{e^x}{x^2\sin x}.</math>
  
Let &nbsp;<math style="vertical-align: -2px">u=x+2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=dx.</math>
+
First, using the Quotient Rule, we have
  
Now, we need a way of replacing &nbsp;<math style="vertical-align: -2px">x^2+4.</math>  
+
::<math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.}
 +
\end{array}</math>
  
If we solve for &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in our first equation, we get &nbsp;<math style="vertical-align: -1px">x=u-2.</math>
+
Now, we need to use the Product Rule. So, we have
 
 
Now, we square both sides of this last equation to get &nbsp;<math style="vertical-align: -5px">x^2=(u-2)^2.</math>
 
 
 
Plugging in to our integral, we get
 
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \frac{x^2+4}{x+2}~dx} & = & \displaystyle{\int \frac{(u-2)^2+4}{u}~du}\\
+
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\
&&\\
 
& = & \displaystyle{\int \frac{u^2-4u+4+4}{u}~du}\\
 
&&\\
 
& = & \displaystyle{\int \frac{u^2-4u+8}{u}~du}\\
 
&&\\
 
& = & \displaystyle{\int u-4+\frac{8}{u}~du}\\
 
&&\\
 
& = & \displaystyle{\frac{u^2}{2}-4u+8\ln|u|+C}\\
 
 
&&\\
 
&&\\
& = & \displaystyle{\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.}\\
+
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>\int \frac{x^2+4}{x+2}~dx=\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.</math>
+
::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math>

Latest revision as of 22:46, 4 October 2017

Introduction

Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule.

For example, if    then  

But, what about more complicated functions?

For example, what is    when  

Or what about    when  

Notice    is a product, and    is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.

Product Rule

Let    Then,

Quotient Rule

Let    Then,

Warm-Up

Calculate  

1)  

Solution:  
Using the Product Rule, we have
Then, using the Power Rule, we have
NOTE: It is not necessary to use the Product Rule to calculate the derivative of this function.
You can distribute the terms and then use the Power Rule.
In this case, we have
Now, using the Power Rule, we get
In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule.
Final Answer:  
       
or equivalently
       

2)  

Solution:  

Using the Quotient Rule, we have

Then, using the Power Rule, we have
NOTE: It is not necessary to use the Quotient Rule to calculate the derivative of this function.
You can divide and then use the Power Rule.
In this case, we have
Now, using the Power Rule, we get
Final Answer:  
       
or equivalently
       

3)  

Solution:  
Using the Quotient Rule, we get
since    and  
Since    we have
Final Answer:  
       

Exercise 1

Calculate the derivative of  

First, we need to know the derivative of    Recall

Now, using the Quotient Rule, we have

Using the Product Rule and Power Rule, we have

So, we have

Exercise 2

Calculate the derivative of  

Notice that the function    is the product of three functions.

We start by grouping two of the functions together. So, we have  

Using the Product Rule, we get

Now, we need to use the Product Rule again. So,

So, we have

But, there is another way to do this problem. Notice

Now, you would only need to use the Product Rule once instead of twice.

Exercise 3

Calculate the derivative of  

Using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we get

Exercise 4

Calculate the derivative of  

First, using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we have