|
|
(19 intermediate revisions by one other user not shown) |
Line 2: |
Line 2: |
| Taking the derivatives of <em>simple functions</em> (i.e. polynomials) is easy using the power rule. | | Taking the derivatives of <em>simple functions</em> (i.e. polynomials) is easy using the power rule. |
| | | |
− | For example, if <math>f(x)=x^3+2x^2+5x+3,</math> then <math>f'(x)=3x^2+4x+5.</math> | + | For example, if <math style="vertical-align: -5px">f(x)=x^3+2x^2+5x+3,</math> then <math style="vertical-align: -5px">f'(x)=3x^2+4x+5.</math> |
| | | |
| But, what about more <em>complicated functions</em>? | | But, what about more <em>complicated functions</em>? |
| | | |
− | The method of <math style="vertical-align: -1px">u</math>-substitution is used to simplify the function you are integrating so that you can easily recognize it's antiderivative.
| + | For example, what is <math style="vertical-align: -5px">f'(x)</math> when <math style="vertical-align: -5px">f(x)=\sin x \cos x?</math> |
| | | |
− | This method is closely related to the chain rule for derivatives.
| + | Or what about <math style="vertical-align: -5px">g'(x)</math> when <math style="vertical-align: -15px">g(x)=\frac{x}{x+1}?</math> |
| | | |
− | One question that is frequently asked is "How do you know what substitution to make?" In general, this is a difficult question to answer since it is dependent on the integral. The best way to master <math style="vertical-align: -1px">u</math>-substitution is to work out as many problems as possible. This will help you:
| + | Notice <math style="vertical-align: -5px">f(x)</math> is a product, and <math style="vertical-align: -5px">g(x)</math> is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives. |
| | | |
− | (1) understand the <math style="vertical-align: -1px">u</math>-substitution method and
| + | '''Product Rule''' |
| | | |
− | (2) correctly identify the necessary substitution. | + | Let <math style="vertical-align: -5px">h(x)=f(x)g(x).</math> Then, |
| | | |
− | <u>NOTE</u>: After you plug-in your substitution, all of the <math style="vertical-align: 0px">x</math>'s in your integral should be gone. The only variables remaining in your integral should be <math style="vertical-align: 0px">u</math>'s. | + | ::<math>h'(x)=f(x)g'(x)+f'(x)g(x).</math> |
| + | |
| + | '''Quotient Rule''' |
| + | |
| + | Let <math style="vertical-align: -19px">h(x)=\frac{f(x)}{g(x)}.</math> Then, |
| + | |
| + | ::<math>h'(x)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}.</math> |
| | | |
| ==Warm-Up== | | ==Warm-Up== |
− | Evaluate the following indefinite integrals.
| + | Calculate <math style="vertical-align: -5px">f'(x).</math> |
| | | |
− | '''1)''' <math>\int (8x+5)e^{4x^2+5x+3}~dx</math> | + | '''1)''' <math style="vertical-align: -7px">f(x)=(x^2+x+1)(x^3+2x^2+4)</math> |
| | | |
| {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" |
| !Solution: | | !Solution: |
| |- | | |- |
− | |Let <math style="vertical-align: -3px">u=4x^2+5x+3.</math> Then, <math style="vertical-align: -5px">du=(8x+5)~dx.</math> | + | |Using the Product Rule, we have |
| + | |- |
| + | | |
| + | ::<math>f'(x)=(x^2+x+1)(x^3+2x^2+4)'+(x^2+x+1)'(x^3+2x^2+4).</math> |
| + | |- |
| + | |Then, using the Power Rule, we have |
| |- | | |- |
| + | | |
| + | ::<math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4).</math> |
| |- | | |- |
− | |Plugging these into our integral, we get <math style="vertical-align: -14px">\int e^u~du,</math> which we know how to integrate.
| |
| |- | | |- |
− | |So, we get | + | |<u>NOTE:</u> It is not necessary to use the Product Rule to calculate the derivative of this function. |
| + | |- |
| + | |You can distribute the terms and then use the Power Rule. |
| + | |- |
| + | |In this case, we have |
| |- | | |- |
| | | | | |
| ::<math>\begin{array}{rcl} | | ::<math>\begin{array}{rcl} |
− | \displaystyle{\int (8x+5)e^{4x^2+5x+3}~dx} & = & \displaystyle{\int e^u~du}\\ | + | \displaystyle{f(x)} & = & \displaystyle{(x^2+x+1)(x^3+2x^2+4)}\\ |
| &&\\ | | &&\\ |
− | & = & \displaystyle{e^u+C}\\ | + | & = & \displaystyle{x^2(x^3+2x^2+4)+x(x^3+2x^2+4)+1(x^3+2x^2+4)}\\ |
| &&\\ | | &&\\ |
− | & = & \displaystyle{e^{4x^2+5x+3}+C.} \\ | + | & = & \displaystyle{x^5+2x^4+4x^2+x^4+2x^3+4x+x^3+2x^2+4} \\ |
| + | &&\\ |
| + | & = & \displaystyle{x^5+3x^4+3x^3+6x^2+4x+4.} |
| \end{array}</math> | | \end{array}</math> |
| + | |- |
| + | |Now, using the Power Rule, we get |
| + | |- |
| + | | |
| + | ::<math>f'(x)=5x^4+12x^3+9x^2+12x+4.</math> |
| + | |- |
| + | |In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule. |
| |} | | |} |
| | | |
Line 46: |
Line 71: |
| !Final Answer: | | !Final Answer: |
| |- | | |- |
− | | <math>e^{4x^2+5x+3}+C</math> | + | | <math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4)</math> |
| |- | | |- |
| + | |or equivalently |
| + | |- |
| + | | <math>f'(x)=x^5+3x^4+3x^3+6x^2+4x+4</math> |
| |} | | |} |
| | | |
− | '''2)''' <math>\int\frac{x}{\sqrt{1-2x^2}}~dx</math> | + | '''2)''' <math style="vertical-align: -14px">f(x)=\frac{x^2+x^3}{x}</math> |
| | | |
| {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" |
| !Solution: | | !Solution: |
| |- | | |- |
− | |Let <math style="vertical-align: -2px">u=1-2x^2.</math> Then, <math style="vertical-align: -2px">du=-4x~dx.</math> Hence, <math style="vertical-align: -15px">\frac{du}{-4}=x~dx.</math> | + | | |
− | |-
| + | Using the Quotient Rule, we have |
− | |Plugging these into our integral, we get
| |
| |- | | |- |
| | | | | |
− | ::<math>\begin{array}{rcl} | + | ::<math>f'(x)=\frac{x(x^2+x^3)'-(x^2+x^3)(x)'}{x^2}.</math> |
− | \displaystyle{\int\frac{x}{\sqrt{1-2x^2}}~dx} & = & \displaystyle{\int -\frac{1}{4}~u^{-\frac{1}{2}}~du}\\
| |
− | &&\\
| |
− | & = & \displaystyle{-\frac{1}{2}u^{\frac{1}{2}}+C}\\
| |
− | &&\\
| |
− | & = & \displaystyle{-\frac{1}{2}\sqrt{1-2x^2}+C.} \\
| |
− | \end{array}</math>
| |
| |- | | |- |
− | |} | + | |Then, using the Power Rule, we have |
− | | |
− | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
| |
− | !Final Answer:
| |
| |- | | |- |
− | | <math>-\frac{1}{2}\sqrt{1-2x^2}+C</math> | + | | |
| + | ::<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)(1)}{x^2}.</math> |
| |- | | |- |
− | |} | + | |<u>NOTE:</u> It is not necessary to use the Quotient Rule to calculate the derivative of this function. |
− | | |
− | '''3)''' <math>\int\frac{\sin(\ln x)}{x}~dx</math>
| |
− | | |
− | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
| |
− | !Solution:
| |
| |- | | |- |
− | |Let <math style="vertical-align: -6px">u=\ln(x).</math> Then, <math style="vertical-align: -14px">du=\frac{1}{x}~dx.</math> | + | |You can divide and then use the Power Rule. |
| |- | | |- |
− | |Plugging these into our integral, we get | + | |In this case, we have |
| |- | | |- |
| | | | | |
| ::<math>\begin{array}{rcl} | | ::<math>\begin{array}{rcl} |
− | \displaystyle{\int\frac{\sin(\ln x)}{x}~dx} & = & \displaystyle{\int \sin(u)~du}\\ | + | \displaystyle{f(x)} & = & \displaystyle{\frac{x^2+x^3}{x}}\\ |
| &&\\ | | &&\\ |
− | & = & \displaystyle{-\cos(u)+C}\\ | + | & = & \displaystyle{\frac{x^2}{x}+\frac{x^3}{x}}\\ |
| &&\\ | | &&\\ |
− | & = & \displaystyle{-\cos(\ln x)+C.} \\ | + | & = & \displaystyle{x+x^2.} \\ |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
| + | |Now, using the Power Rule, we get |
| + | |- |
| + | | |
| + | ::<math>f'(x)=1+2x.</math> |
| |} | | |} |
| | | |
Line 100: |
Line 118: |
| !Final Answer: | | !Final Answer: |
| |- | | |- |
− | | <math>-\cos(\ln x)+C</math> | + | || <math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)}{x^2}</math> |
| + | |- |
| + | |or equivalently |
| + | |- |
| + | | <math>f'(x)=1+2x</math> |
| + | |
| |- | | |- |
| |} | | |} |
| | | |
− | '''4)''' <math>\int xe^{x^2}~dx</math> | + | '''3)''' <math style="vertical-align: -14px">f(x)=\frac{\sin x}{\cos x}</math> |
| | | |
| {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" |
| !Solution: | | !Solution: |
| |- | | |- |
− | |Let <math style="vertical-align: -1px">u=x^2.</math> Then, <math style="vertical-align: -1px">du=2x~dx</math> and <math style="vertical-align: -15px">\frac{du}{2}=x~dx.</math> | + | |Using the Quotient Rule, we get |
− | |-
| |
− | |Plugging these into our integral, we get
| |
| |- | | |- |
| | | | | |
| ::<math>\begin{array}{rcl} | | ::<math>\begin{array}{rcl} |
− | \displaystyle{\int xe^{x^2}~dx} & = & \displaystyle{\int \frac{1}{2}e^u~du}\\ | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{\cos x(\sin x)'-\sin x (\cos x)'}{(\cos x)^2}}\\ |
| + | &&\\ |
| + | & = & \displaystyle{\frac{\cos x(\cos x)-\sin x (-\sin x)}{(\cos x)^2}}\\ |
| &&\\ | | &&\\ |
− | & = & \displaystyle{\frac{1}{2}e^u+C}\\ | + | & = & \displaystyle{\frac{\cos^2 x+\sin^2 x}{\cos^2 x}} \\ |
| &&\\ | | &&\\ |
− | & = & \displaystyle{\frac{1}{2}e^{x^2}+C.} \\ | + | & = & \displaystyle{\frac{1}{\cos^2 x}}\\ |
| + | &&\\ |
| + | & = & \displaystyle{\sec^2 x} |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
| + | |since <math style="vertical-align: -2px">\sin^2 x+\cos^2 x=1</math> and <math style="vertical-align: -13px">\sec x=\frac{1}{\cos x}.</math> |
| + | |- |
| + | |Since <math style="vertical-align: -14px">\frac{\sin x}{\cos x}=\tan x,</math> we have |
| + | |- |
| + | | |
| + | ::<math>\frac{d}{dx}{\tan x}=\sec^2 x.</math> |
| |} | | |} |
| | | |
Line 127: |
Line 158: |
| !Final Answer: | | !Final Answer: |
| |- | | |- |
− | | <math>\frac{1}{2}e^{x^2}+C</math> | + | | <math>f'(x)=\sec^2 x</math> |
| |- | | |- |
| |} | | |} |
Line 133: |
Line 164: |
| == Exercise 1 == | | == Exercise 1 == |
| | | |
− | Evaluate the indefinite integral <math style="vertical-align: -16px">\int \frac{2}{y^2+4}~dy.</math>
| + | Calculate the derivative of <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}(\csc x-4).</math> |
| + | |
| + | First, we need to know the derivative of <math style="vertical-align: 0px">\csc x.</math> Recall |
| | | |
− | First, we factor out <math style="vertical-align: -1px">4</math> out of the denominator.
| + | ::<math>\csc x =\frac{1}{\sin x}.</math> |
| | | |
− | So, we have
| + | Now, using the Quotient Rule, we have |
| | | |
| ::<math>\begin{array}{rcl} | | ::<math>\begin{array}{rcl} |
− | \displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{4}\int \frac{2}{\frac{y^2}{4}+1}~dy}\\ | + | \displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\ |
| &&\\ | | &&\\ |
− | & = & \displaystyle{\frac{1}{2}\int \frac{1}{(\frac{y}{2})^2+1}~dy.}\\ | + | & = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\ |
| + | &&\\ |
| + | & = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\ |
| + | &&\\ |
| + | & = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\ |
| + | &&\\ |
| + | & = & \displaystyle{-\csc x \cot x.} |
| \end{array}</math> | | \end{array}</math> |
| | | |
− | Now, we use <math style="vertical-align: -1px">u</math>-substitution. Let <math>u=\frac{y}{2}.</math>
| + | Using the Product Rule and Power Rule, we have |
− | | |
− | Then, <math style="vertical-align: -14px">du=\frac{1}{2}~dy</math> and <math style="vertical-align: -5px">2~du=dy.</math>
| |
− | | |
− | Plugging these into our integral, we get
| |
| | | |
| ::<math>\begin{array}{rcl} | | ::<math>\begin{array}{rcl} |
− | \displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{2}\int \frac{2}{u^2+1}~du}\\ | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\ |
| &&\\ | | &&\\ |
− | & = & \displaystyle{\int \frac{1}{u^2+1}~du}\\ | + | & = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\ |
| &&\\ | | &&\\ |
− | & = & \displaystyle{\arctan(u)+C}\\ | + | & = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.} |
− | &&\\
| |
− | & = & \displaystyle{\arctan\bigg(\frac{y}{2}\bigg)+C.}\\
| |
| \end{array}</math> | | \end{array}</math> |
| | | |
| So, we have | | So, we have |
− | ::<math>\int \frac{2}{y^2+4}~dy=\arctan\bigg(\frac{y}{2}\bigg)+C.</math> | + | ::<math>f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.</math> |
| | | |
| == Exercise 2 == | | == Exercise 2 == |
| | | |
− | Evaluate the indefinite integral <math style="vertical-align: -17px">\int \frac{\cos(x)}{(5+\sin x)^2}~dx.</math>
| + | Calculate the derivative of <math style="vertical-align: -5px">g(x)=2x\sin x \sec x.</math> |
| | | |
− | Let <math style="vertical-align: -5px">u=5+\sin(x).</math> Then, <math style="vertical-align: -5px">u=\cos(x)~dx.</math>
| + | Notice that the function <math style="vertical-align: -5px">g(x)</math> is the product of three functions. |
| | | |
− | Plugging these into our integral, we get
| + | We start by grouping two of the functions together. So, we have <math style="vertical-align: -5px">g(x)=(2x\sin x)\sec x.</math> |
| + | |
| + | Using the Product Rule, we get |
| | | |
| ::<math>\begin{array}{rcl} | | ::<math>\begin{array}{rcl} |
− | \displaystyle{\int \frac{\cos(x)}{(5+\sin x)^2}~dx} & = & \displaystyle{\int \frac{1}{u^2}~du}\\ | + | \displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\ |
| &&\\ | | &&\\ |
− | & = & \displaystyle{-\frac{1}{u}+C}\\ | + | & = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.} |
| + | \end{array}</math> |
| + | |
| + | Now, we need to use the Product Rule again. So, |
| + | |
| + | ::<math>\begin{array}{rcl} |
| + | \displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\ |
| &&\\ | | &&\\ |
− | & = & \displaystyle{-\frac{1}{5+\sin(x)}+C.} | + | & = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.} |
| \end{array}</math> | | \end{array}</math> |
| | | |
| So, we have | | So, we have |
− | ::<math>\int \frac{\cos(x)}{(5+\sin x)^2}~dx=-\frac{1}{5+\sin(x)}+C.</math> | + | ::<math>g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.</math> |
| + | |
| + | But, there is another way to do this problem. Notice |
| | | |
− | == Exercise 3 == | + | ::<math>\begin{array}{rcl} |
| + | \displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\ |
| + | &&\\ |
| + | & = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\ |
| + | &&\\ |
| + | & = & \displaystyle{2x\tan x.} |
| + | \end{array}</math> |
| | | |
− | Evaluate the indefinite integral <math style="vertical-align: -16px">\int \frac{x+5}{2x+3}~dx.</math>
| + | Now, you would only need to use the Product Rule once instead of twice. |
| | | |
− | Here, the substitution is not obvious.
| + | == Exercise 3 == |
| | | |
− | Let <math style="vertical-align: -3px">u=2x+3.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -14px">\frac{du}{2}=dx.</math>
| + | Calculate the derivative of <math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math> |
| | | |
− | Now, we need a way of getting rid of <math style="vertical-align: -2px">x+5</math> in the numerator.
| + | Using the Quotient Rule, we have |
| | | |
− | Solving for <math style="vertical-align: 0px">x</math> in the first equation, we get <math style="vertical-align: -14px">x=\frac{1}{2}u-\frac{3}{2}.</math>
| + | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math> |
| | | |
− | Plugging these into our integral, we get
| + | Now, we need to use the Product Rule. So, we have |
| | | |
| ::<math>\begin{array}{rcl} | | ::<math>\begin{array}{rcl} |
− | \displaystyle{\int \frac{x+5}{2x+3}~dx} & = & \displaystyle{\int \frac{(\frac{1}{2}u-\frac{3}{2})+5}{2u}~du}\\ | + | \displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\ |
− | &&\\
| |
− | & = & \displaystyle{\frac{1}{2}\int \frac{\frac{1}{2}u+\frac{7}{2}}{u}~du}\\
| |
− | &&\\
| |
− | & = & \displaystyle{\frac{1}{4}\int \frac{u+7}{u}~du}\\
| |
− | &&\\
| |
− | & = & \displaystyle{\frac{1}{4}\int 1+\frac{7}{u}~du}\\
| |
− | &&\\
| |
− | & = & \displaystyle{\frac{1}{4}(u+7\ln|u|)+C}\\
| |
| &&\\ | | &&\\ |
− | & = & \displaystyle{\frac{1}{4}(2x+3+7\ln|2x+3|)+C.}\\ | + | & = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.} |
| \end{array}</math> | | \end{array}</math> |
| | | |
| So, we get | | So, we get |
− | ::<math>\int \frac{x+5}{2x+3}~dx=\frac{1}{4}(2x+3+7\ln|2x+3|)+C.</math> | + | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math> |
| | | |
| == Exercise 4 == | | == Exercise 4 == |
| | | |
− | Evaluate the indefinite integral <math style="vertical-align: -14px">\int \frac{x^2+4}{x+2}~dx.</math>
| + | Calculate the derivative of <math style="vertical-align: -14px">f(x)=\frac{e^x}{x^2\sin x}.</math> |
| | | |
− | Let <math style="vertical-align: -2px">u=x+2.</math> Then, <math style="vertical-align: -1px">du=dx.</math>
| + | First, using the Quotient Rule, we have |
| | | |
− | Now, we need a way of replacing <math style="vertical-align: -2px">x^2+4.</math>
| + | ::<math>\begin{array}{rcl} |
| + | \displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\ |
| + | &&\\ |
| + | & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.} |
| + | \end{array}</math> |
| | | |
− | If we solve for <math style="vertical-align: 0px">x</math> in our first equation, we get <math style="vertical-align: -1px">x=u-2.</math>
| + | Now, we need to use the Product Rule. So, we have |
− | | |
− | Now, we square both sides of this last equation to get <math style="vertical-align: -5px">x^2=(u-2)^2.</math> | |
− | | |
− | Plugging in to our integral, we get
| |
| | | |
| ::<math>\begin{array}{rcl} | | ::<math>\begin{array}{rcl} |
− | \displaystyle{\int \frac{x^2+4}{x+2}~dx} & = & \displaystyle{\int \frac{(u-2)^2+4}{u}~du}\\ | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\ |
− | &&\\
| |
− | & = & \displaystyle{\int \frac{u^2-4u+4+4}{u}~du}\\
| |
− | &&\\
| |
− | & = & \displaystyle{\int \frac{u^2-4u+8}{u}~du}\\
| |
− | &&\\
| |
− | & = & \displaystyle{\int u-4+\frac{8}{u}~du}\\
| |
− | &&\\
| |
− | & = & \displaystyle{\frac{u^2}{2}-4u+8\ln|u|+C}\\
| |
| &&\\ | | &&\\ |
− | & = & \displaystyle{\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.}\\ | + | & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.} |
| \end{array}</math> | | \end{array}</math> |
| | | |
| So, we have | | So, we have |
− | ::<math>\int \frac{x^2+4}{x+2}~dx=\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.</math> | + | ::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math> |
Introduction
Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule.
For example, if
then
But, what about more complicated functions?
For example, what is
when
Or what about
when
Notice
is a product, and
is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
Product Rule
Let
Then,

Quotient Rule
Let
Then,

Warm-Up
Calculate
1)
Solution:
|
Using the Product Rule, we have
|

|
Then, using the Power Rule, we have
|

|
NOTE: It is not necessary to use the Product Rule to calculate the derivative of this function.
|
You can distribute the terms and then use the Power Rule.
|
In this case, we have
|

|
Now, using the Power Rule, we get
|

|
In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule.
|
Final Answer:
|
|
or equivalently
|
|
2)
Final Answer:
|
|
or equivalently
|
|
3)
Solution:
|
Using the Quotient Rule, we get
|

|
since and
|
Since we have
|

|
Final Answer:
|
|
Exercise 1
Calculate the derivative of
First, we need to know the derivative of
Recall

Now, using the Quotient Rule, we have

Using the Product Rule and Power Rule, we have

So, we have

Exercise 2
Calculate the derivative of
Notice that the function
is the product of three functions.
We start by grouping two of the functions together. So, we have
Using the Product Rule, we get

Now, we need to use the Product Rule again. So,

So, we have

But, there is another way to do this problem. Notice

Now, you would only need to use the Product Rule once instead of twice.
Exercise 3
Calculate the derivative of
Using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we get

Exercise 4
Calculate the derivative of
First, using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we have
