|
|
Line 240: |
Line 240: |
| Calculate the derivative of <math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math> | | Calculate the derivative of <math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math> |
| | | |
− | Here, the substitution is not obvious.
| + | Using the Quotient Rule, we have |
| | | |
− | Let <math style="vertical-align: -3px">u=2x+3.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -14px">\frac{du}{2}=dx.</math>
| + | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math> |
| | | |
− | Now, we need a way of getting rid of <math style="vertical-align: -2px">x+5</math> in the numerator. | + | Now, we need to use the Product Rule. So, we have |
− | | |
− | Solving for <math style="vertical-align: 0px">x</math> in the first equation, we get <math style="vertical-align: -14px">x=\frac{1}{2}u-\frac{3}{2}.</math>
| |
− | | |
− | Plugging these into our integral, we get
| |
| | | |
| ::<math>\begin{array}{rcl} | | ::<math>\begin{array}{rcl} |
− | \displaystyle{\int \frac{x+5}{2x+3}~dx} & = & \displaystyle{\int \frac{(\frac{1}{2}u-\frac{3}{2})+5}{2u}~du}\\ | + | \displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\ |
− | &&\\
| |
− | & = & \displaystyle{\frac{1}{2}\int \frac{\frac{1}{2}u+\frac{7}{2}}{u}~du}\\
| |
− | &&\\
| |
− | & = & \displaystyle{\frac{1}{4}\int \frac{u+7}{u}~du}\\
| |
− | &&\\
| |
− | & = & \displaystyle{\frac{1}{4}\int 1+\frac{7}{u}~du}\\
| |
− | &&\\
| |
− | & = & \displaystyle{\frac{1}{4}(u+7\ln|u|)+C}\\
| |
| &&\\ | | &&\\ |
− | & = & \displaystyle{\frac{1}{4}(2x+3+7\ln|2x+3|)+C.}\\ | + | & = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.} |
| \end{array}</math> | | \end{array}</math> |
| | | |
| So, we get | | So, we get |
− | ::<math>\int \frac{x+5}{2x+3}~dx=\frac{1}{4}(2x+3+7\ln|2x+3|)+C.</math> | + | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math> |
| | | |
| == Exercise 4 == | | == Exercise 4 == |
Introduction
Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule.
For example, if
then
But, what about more complicated functions?
For example, what is
when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\sin x \cos x?}
Or what about
when
Notice
is a product and
is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
Product Rule
Let
Then,

Quotient Rule
Let
Then,

Warm-Up
Calculate
1)
Solution:
|
Using the Product Rule, we have
|

|
Then, using the Power Rule, we have
|

|
NOTE: It is not necessary to use the Product Rule to calculate the derivative of this function.
|
You can distribute the terms and then use the Power Rule.
|
In this case, we have
|

|
Now, using the Power Rule, we get
|

|
In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule.
|
Final Answer:
|
|
or equivalently
|
|
2)
Final Answer:
|
|
or equivalently
|
|
3)
Solution:
|
Using the Quotient Rule, we get
|

|
since and
|
Since we have
|

|
Final Answer:
|
|
Exercise 1
Calculate the derivative of
First, we need to know the derivative of
Recall

Now, using the Quotient Rule, we have

Using the Product Rule and Power Rule, we have

So, we have

Exercise 2
Calculate the derivative of
Notice that the function
is the product of three functions.
We start by grouping two of the functions together. So, we have
Using the Product Rule, we get

Now, we need to use the Product Rule again. So,

So, we have

But, there is another way to do this problem. Notice

Now, you would only need to use the Product Rule once instead of twice.
Exercise 3
Calculate the derivative of
Using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we get

Exercise 4
Calculate the derivative of
Let
Then,
Now, we need a way of replacing
If we solve for
in our first equation, we get
Now, we square both sides of this last equation to get
Plugging in to our integral, we get

So, we have
