Difference between revisions of "Product Rule and Quotient Rule"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 166: | Line 166: | ||
Calculate the derivative of <math style="vertical-align: -16px">f(x)=\frac{1}{x^2}(\csc x-4).</math> | Calculate the derivative of <math style="vertical-align: -16px">f(x)=\frac{1}{x^2}(\csc x-4).</math> | ||
| − | First, we | + | First, we need to know the derivative of <math style="vertical-align: -1px">\csc x.</math> Recall |
| − | + | ::<math>\csc x =\frac{1}{\sin x}.</math> | |
| + | |||
| + | Now, using the Quotient Rule, we have | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
| − | \displaystyle{ | + | \displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\ |
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\ |
| + | &&\\ | ||
| + | & = & \displaystyle{-\csc x \cot x.} | ||
\end{array}</math> | \end{array}</math> | ||
| − | + | Using the Product Rule and Power Rule, we have | |
| − | |||
| − | |||
| − | |||
| − | |||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
| − | \displaystyle{ | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\ |
| − | |||
| − | |||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\ | + | & = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\ | + | & = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.} |
\end{array}</math> | \end{array}</math> | ||
So, we have | So, we have | ||
| − | ::<math> | + | ::<math>f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.</math> |
== Exercise 2 == | == Exercise 2 == | ||
Revision as of 08:37, 4 October 2017
Introduction
Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule.
For example, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=x^3+2x^2+5x+3,} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3x^2+4x+5.}
But, what about more complicated functions?
For example, what is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)} when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\sin x \cos x?}
Or what about Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)} when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\frac{x}{x+1}?}
Notice Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is a product and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)} is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
Product Rule
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=f(x)g(x).} Then,
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=f(x)g'(x)+f'(x)g(x).}
Quotient Rule
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{f(x)}{g(x)}.} Then,
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}.}
Warm-Up
Calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x).}
1) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=(x^2+x+1)(x^3+2x^2+4)}
| Solution: |
|---|
| Using the Product Rule, we have |
|
| Then, using the Power Rule, we have |
|
| NOTE: It is not necessary to use the Product Rule to calculate the derivative of this function. |
| You can distribute the terms and then use the Power Rule. |
| In this case, we have |
|
| Now, using the Power Rule, we get |
|
| In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule. |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4)} |
| or equivalently |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=x^5+3x^4+3x^3+6x^2+4x+4} |
2) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{x^2+x^3}{x}}
| Solution: |
|---|
|
Using the Quotient Rule, we have |
|
| Then, using the Power Rule, we have |
|
| NOTE: It is not necessary to use the Quotient Rule to calculate the derivative of this function. |
| You can divide and then use the Power Rule. |
| In this case, we have |
|
| Now, using the Power Rule, we get |
|
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)}{x^2}} |
| or equivalently |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=1+2x} |
3) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{\sin x}{\cos x}}
| Solution: |
|---|
| Using the Quotient Rule, we get |
|
| since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2 x+\cos^2 x=1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec x=\frac{1}{\cos x}.} |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sin x}{\cos x}=\tan x,} we have |
|
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\sec^2 x} |
Exercise 1
Calculate the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{1}{x^2}(\csc x-4).}
First, we need to know the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \csc x.} Recall
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \csc x =\frac{1}{\sin x}.}
Now, using the Quotient Rule, we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\ &&\\ & = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\ &&\\ & = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\ &&\\ & = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\ &&\\ & = & \displaystyle{-\csc x \cot x.} \end{array}}
Using the Product Rule and Power Rule, we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\ &&\\ & = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\ &&\\ & = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.} \end{array}}
So, we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.}
Exercise 2
Calculate the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=2x\sin x \sec x.}
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=5+\sin(x).} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos(x)~dx.}
Plugging these into our integral, we get
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{\cos(x)}{(5+\sin x)^2}~dx} & = & \displaystyle{\int \frac{1}{u^2}~du}\\ &&\\ & = & \displaystyle{-\frac{1}{u}+C}\\ &&\\ & = & \displaystyle{-\frac{1}{5+\sin(x)}+C.} \end{array}}
So, we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{\cos(x)}{(5+\sin x)^2}~dx=-\frac{1}{5+\sin(x)}+C.}
Exercise 3
Calculate the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.}
Here, the substitution is not obvious.
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=2x+3.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2~dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{2}=dx.}
Now, we need a way of getting rid of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+5} in the numerator.
Solving for in the first equation, we get
Plugging these into our integral, we get
So, we get
Exercise 4
Calculate the derivative of
Let Then,
Now, we need a way of replacing
If we solve for in our first equation, we get
Now, we square both sides of this last equation to get
Plugging in to our integral, we get
So, we have