Difference between revisions of "031 Review Problems"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 459: | Line 459: | ||
|} | |} | ||
− | '''21.''' | + | '''21.''' Let <math>A= |
+ | \begin{bmatrix} | ||
+ | 1 & 3 & 8 \\ | ||
+ | 2 & 4 &11\\ | ||
+ | 1 & 2 & 5 | ||
+ | \end{bmatrix}.</math> Find <math>A^{-1}</math> if possible. | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
Line 473: | Line 479: | ||
|} | |} | ||
− | '''22.''' | + | '''22.''' Find a formula for <math>\begin{bmatrix} |
+ | 1 & -6 \\ | ||
+ | 2 & -6 | ||
+ | \end{bmatrix}^k</math> by diagonalizing the matrix. | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
Line 488: | Line 498: | ||
'''23.''' | '''23.''' | ||
+ | |||
+ | (a) Show that if <math>\vec{x}</math> is an eigenvector of the matrix <math>A</math> corresponding to the eigenvalue 2, then <math>\vec{x}</math> is an eigenvector of <math>A^3-A^2+I.</math> What is the corresponding eigenvalue? | ||
+ | |||
+ | (b) Show that if <math>\vec{y}</math> is an eigenvector of the matrix <math>A</math> corresponding to the eigenvalue 3 and <math>A</math> is invertible, then <math>\vec{y}</math> is an eigenvector of <math>A^{-1}.</math> What is the corresponding eigenvalue? | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
Line 501: | Line 516: | ||
|} | |} | ||
− | '''24.''' | + | '''24.''' Let <math>A=\begin{bmatrix} |
+ | 3 & 0 & -1 \\ | ||
+ | 0 & 1 &-3\\ | ||
+ | 1 & 0 & 0 | ||
+ | \end{bmatrix}\begin{bmatrix} | ||
+ | 3 & 0 & 0 \\ | ||
+ | 0 & 4 &0\\ | ||
+ | 0 & 0 & 3 | ||
+ | \end{bmatrix}\begin{bmatrix} | ||
+ | 0 & 0 & 1 \\ | ||
+ | -3 & 1 &9\\ | ||
+ | -1 & 0 & 3 | ||
+ | \end{bmatrix}.</math> | ||
+ | |||
+ | Use the Diagonalization Theorem to find the eigenvalues of <math>A</math> and a basis for each eigenspace. | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
Line 515: | Line 545: | ||
|} | |} | ||
− | '''25.''' | + | '''25.''' Give an example of a <math>3\times 3</math> matrix <math>A</math> with eigenvalues 5,-1 and 3. |
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
Line 529: | Line 560: | ||
|} | |} | ||
− | '''26.''' | + | '''26.''' Assume <math>A^2=I.</math> Find Nul <math>A.</math> |
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
Line 543: | Line 575: | ||
|} | |} | ||
− | '''27.''' | + | '''27.''' If <math>A</math> is an <math>n\times n</math> matrix such that <math>AA^T=I,</math> what are the possible values of det <math>A?</math> |
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
Line 557: | Line 590: | ||
|} | |} | ||
− | '''28.''' | + | '''28.''' Show that if <math>\vec{x}</math> is an eigenvector of the matrix product <math>AB</math> and <math>B\vec{x}\ne \vec{0},</math> then <math>B\vec{x}</math> is an eigenvector of <math>BA.</math> |
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
Line 572: | Line 606: | ||
'''29.''' | '''29.''' | ||
+ | |||
+ | (a) Suppose a <math>6\times 8</math> matrix <math>A</math> has 4 pivot columns. What is dim Nul <math>A?</math> Is Col <math>A=\mathbb{R}^4?</math> Why or why not? | ||
+ | |||
+ | (b) If <math>A</math> is a <math>7\times 5</math> matrix, what is the smallest possible dimension of Nul <math>A?</math> | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
Line 585: | Line 624: | ||
|} | |} | ||
− | '''30.''' | + | '''30.''' Consider the following system of equations. |
+ | |||
+ | <math>x_1+kx_2=1</math> | ||
+ | |||
+ | <math>3x_1+5x_2=2k</math> | ||
+ | |||
+ | Find all real values of <math>k</math> such that the system has only one solution. | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
Line 599: | Line 645: | ||
|} | |} | ||
− | '''31.''' | + | '''31.''' Suppose <math>\{\vec{u},\vec{v}\}</math> is a basis of the eigenspace corresponding to the eigenvalue 0 of a <math>5\times 5</math> matrix <math>A.</math> |
+ | |||
+ | (a) Is <math>\vec{w}=\vec{u}-2\vec{v}</math> an eigenvector of <math>A?</math> If so, find the corresponding eigenvalue. | ||
+ | |||
+ | If not, explain why. | ||
+ | |||
+ | (b) Find the dimension of Col <math>A.</math> | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: |
Revision as of 18:13, 24 August 2017
This is a list of sample problems and is meant to represent the material usually covered in Math 31. An actual test may or may not be similar.
1. True or false: If all the entries of a matrix are then det must be
Solution: |
---|
Final Answer: |
---|
2. True or false: If a matrix is diagonalizable, then the matrix must be diagonalizable as well.
Solution: |
---|
Final Answer: |
---|
3. True or false: If is a matrix with characteristic equation then is diagonalizable.
Solution: |
---|
Final Answer: |
---|
4. True or false: If is invertible, then is diagonalizable.
Solution: |
---|
Final Answer: |
---|
5. True or false: If and are invertible matrices, then so is
Solution: |
---|
Final Answer: |
---|
6. True or false: If is a matrix and dim Nul then is consistent for all in
Solution: |
---|
Final Answer: |
---|
7. True or false: Let for matrices and If is invertible, then is invertible.
Solution: |
---|
Final Answer: |
---|
8. True or false: Let be a subspace of and be a vector in If and then
Solution: |
---|
Final Answer: |
---|
9. True or false: If is an invertible matrix, and and are matrices such that then
Solution: |
---|
Final Answer: |
---|
10.
(a) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
(b) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
Solution: |
---|
Final Answer: |
---|
11. Find the eigenvalues and eigenvectors of the matrix
Solution: |
---|
Final Answer: |
---|
12. Consider the matrix and assume that it is row equivalent to the matrix
(a) List rank and dim Nul
(b) Find bases for Col and Nul Find an example of a nonzero vector that belongs to Col as well as an example of a nonzero vector that belongs to Nul
Solution: |
---|
Final Answer: |
---|
13. Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?
Solution: |
---|
Final Answer: |
---|
14. Let
(a) Is invertible? Explain.
(b) Define a linear transformation by the formula Is onto? Explain.
Solution: |
---|
Final Answer: |
---|
15. Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
Solution: |
---|
Final Answer: |
---|
16. Let and be matrices with det and det Use properties of
determinants to compute:
(a) det
(b) det
Solution: |
---|
Final Answer: |
---|
17. Let
(a) Find a basis for the eigenspace(s) of
(b) Is the matrix diagonalizable? Explain.
Solution: |
---|
Final Answer: |
---|
18. Let and
(a) Find a unit vector in the direction of
(b) Find the distance between and
(c) Let Span Compute the orthogonal projection of onto
Solution: |
---|
Final Answer: |
---|
19. Let Span Is in Explain.
Solution: |
---|
Final Answer: |
---|
20.
(a) Let be a transformation given by
Determine whether is a linear transformation. Explain.
(b) Let and Find and
Solution: |
---|
Final Answer: |
---|
21. Let Find if possible.
Solution: |
---|
Final Answer: |
---|
22. Find a formula for by diagonalizing the matrix.
Solution: |
---|
Final Answer: |
---|
23.
(a) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 2, then is an eigenvector of What is the corresponding eigenvalue?
(b) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 3 and is invertible, then is an eigenvector of What is the corresponding eigenvalue?
Solution: |
---|
Final Answer: |
---|
24. Let
Use the Diagonalization Theorem to find the eigenvalues of and a basis for each eigenspace.
Solution: |
---|
Final Answer: |
---|
25. Give an example of a matrix with eigenvalues 5,-1 and 3.
Solution: |
---|
Final Answer: |
---|
26. Assume Find Nul
Solution: |
---|
Final Answer: |
---|
27. If is an matrix such that what are the possible values of det
Solution: |
---|
Final Answer: |
---|
28. Show that if is an eigenvector of the matrix product and then is an eigenvector of
Solution: |
---|
Final Answer: |
---|
29.
(a) Suppose a matrix has 4 pivot columns. What is dim Nul Is Col Why or why not?
(b) If is a matrix, what is the smallest possible dimension of Nul
Solution: |
---|
Final Answer: |
---|
30. Consider the following system of equations.
Find all real values of such that the system has only one solution.
Solution: |
---|
Final Answer: |
---|
31. Suppose is a basis of the eigenspace corresponding to the eigenvalue 0 of a matrix
(a) Is an eigenvector of If so, find the corresponding eigenvalue.
If not, explain why.
(b) Find the dimension of Col
Solution: |
---|
Final Answer: |
---|