Difference between revisions of "031 Review Problems"

From Grad Wiki
Jump to navigation Jump to search
Line 336: Line 336:
 
|}
 
|}
  
'''17.'''  
+
'''17.''' Let <math>A=   
 +
    \begin{bmatrix}
 +
          5 & 1 \\
 +
          0 & 5
 +
        \end{bmatrix}.</math>
 +
 
 +
(a) Find a basis for the eigenspace(s) of <math>A.</math>
 +
 
 +
(b) Is the matrix <math>A</math> diagonalizable? Explain.
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 350: Line 359:
 
|}
 
|}
  
'''18.'''  
+
'''18.''' Let <math>\vec{v}=\begin{bmatrix}
 +
          -1 \\
 +
          3 \\
 +
          0
 +
        \end{bmatrix}</math> and <math>\vec{y}=\begin{bmatrix}
 +
          2 \\
 +
          0 \\
 +
          5
 +
        \end{bmatrix}.</math>
 +
       
 +
(a) Find a unit vector in the direction of <math>\vec{v}.</math>
 +
       
 +
(b) Find the distance between <math>\vec{v}</math> and <math>\vec{y}.</math>
 +
       
 +
(c) Let <math>L=</math>Span<math>\{\vec{v}\}.</math> Compute the orthogonal projection of <math>\vec{y}</math> onto <math>L.</math>
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 364: Line 388:
 
|}
 
|}
  
'''19.'''  
+
'''19.''' Let <math>W=</math>Span<math>\Bigg\{\begin{bmatrix}
 +
          2 \\
 +
          0 \\
 +
          -1 \\
 +
          0
 +
        \end{bmatrix},\begin{bmatrix}
 +
          -3 \\
 +
          1 \\
 +
          0 \\
 +
          0
 +
        \end{bmatrix}\Bigg\}.</math> Is <math>\begin{bmatrix}
 +
          2 \\
 +
          6 \\
 +
          4 \\
 +
          0
 +
        \end{bmatrix}</math> in <math>W^\perp?</math> Explain.
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 379: Line 419:
  
 
'''20.'''  
 
'''20.'''  
 +
 +
(a) Let <math>T:\mathbb{R}^2\rightarrow \mathbb{R}^2</math> be a transformation given by
 +
 +
<math>T\bigg(
 +
\begin{bmatrix}
 +
          x \\
 +
          y
 +
        \end{bmatrix}
 +
        \bigg)=
 +
\begin{bmatrix}
 +
          1-xy \\
 +
          x+y
 +
        \end{bmatrix}.</math>
 +
 +
Determine whether <math>T</math> is a linear transformation. Explain.
 +
 +
(b) Let <math>A=   
 +
    \begin{bmatrix}
 +
          1 & -3 & 0 \\
 +
          -4 & 1 &1
 +
        \end{bmatrix}</math> and <math>B=   
 +
    \begin{bmatrix}
 +
          2 & 1\\
 +
          1 & 0 \\
 +
          -1 & 1
 +
        \end{bmatrix}.</math> Find <math>AB,</math> <math>BA^T</math> and <math>A-B^T.</math>
 +
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;

Revision as of 18:00, 24 August 2017

This is a list of sample problems and is meant to represent the material usually covered in Math 31. An actual test may or may not be similar.


1. True or false: If all the entries of a matrix are then det must be

Solution:  
Final Answer:  

2. True or false: If a matrix is diagonalizable, then the matrix must be diagonalizable as well.

Solution:  
Final Answer:  

3. True or false: If is a matrix with characteristic equation then is diagonalizable.

Solution:  
Final Answer:  

4. True or false: If is invertible, then is diagonalizable.

Solution:  
Final Answer:  

5. True or false: If and are invertible matrices, then so is

Solution:  
Final Answer:  

6. True or false: If is a matrix and dim Nul then is consistent for all in

Solution:  
Final Answer:  

7. True or false: Let for matrices and If is invertible, then is invertible.

Solution:  
Final Answer:  

8. True or false: Let be a subspace of and be a vector in If and then

Solution:  
Final Answer:  

9. True or false: If is an invertible matrix, and and are matrices such that then

Solution:  
Final Answer:  

10.

(a) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

Solution:  
Final Answer:  

11. Find the eigenvalues and eigenvectors of the matrix

Solution:  
Final Answer:  

12. Consider the matrix and assume that it is row equivalent to the matrix

(a) List rank and dim Nul

(b) Find bases for Col and Nul Find an example of a nonzero vector that belongs to Col as well as an example of a nonzero vector that belongs to Nul

Solution:  
Final Answer:  

13. Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?

Solution:  
Final Answer:  

14. Let

(a) Is invertible? Explain.

(b) Define a linear transformation by the formula Is onto? Explain.

Solution:  
Final Answer:  

15. Suppose is a linear transformation given by the formula

(a) Find the standard matrix for

(b) Let Find

(c) Is in the range of Explain.

Solution:  
Final Answer:  

16. Let and be matrices with det and det Use properties of

determinants to compute:

(a) det

(b) det

Solution:  
Final Answer:  

17. Let

(a) Find a basis for the eigenspace(s) of

(b) Is the matrix diagonalizable? Explain.

Solution:  
Final Answer:  

18. Let and

(a) Find a unit vector in the direction of

(b) Find the distance between and

(c) Let Span Compute the orthogonal projection of onto

Solution:  
Final Answer:  

19. Let Span Is in Explain.

Solution:  
Final Answer:  

20.

(a) Let be a transformation given by

Determine whether is a linear transformation. Explain.

(b) Let and Find and

Solution:  
Final Answer:  

21.

Solution:  
Final Answer:  

22.

Solution:  
Final Answer:  

23.

Solution:  
Final Answer:  

24.

Solution:  
Final Answer:  

25.

Solution:  
Final Answer:  

26.

Solution:  
Final Answer:  

27.

Solution:  
Final Answer:  

28.

Solution:  
Final Answer:  

29.

Solution:  
Final Answer:  

30.

Solution:  
Final Answer:  

31.

Solution:  
Final Answer: