Difference between revisions of "031 Review Problems"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 165: | Line 165: | ||
|} | |} | ||
| − | '''11.''' | + | '''11.''' Find the eigenvalues and eigenvectors of the matrix <math>A= |
| + | \begin{bmatrix} | ||
| + | 1 & 1 & 1 \\ | ||
| + | 0 & -1 & 1 \\ | ||
| + | 0 & 0 & 2 | ||
| + | \end{bmatrix}.</math> | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
| Line 179: | Line 185: | ||
|} | |} | ||
| − | '''12.''' | + | '''12.''' Consider the matrix <math>A= |
| + | \begin{bmatrix} | ||
| + | 1 & -4 & 9 & -7 \\ | ||
| + | -1 & 2 & -4 & 1 \\ | ||
| + | 5 & -6 & 10 & 7 | ||
| + | \end{bmatrix}</math> and assume that it is row equivalent to the matrix | ||
| + | |||
| + | <math>B= | ||
| + | \begin{bmatrix} | ||
| + | 1 & 0 & -1 & 5 \\ | ||
| + | 0 & -2 & 5 & -6 \\ | ||
| + | 0 & 0 & 0 & 0 | ||
| + | \end{bmatrix}.</math> | ||
| + | |||
| + | (a) List rank <math>A</math> and dim Nul <math>A.</math> | ||
| + | |||
| + | (b) Find bases for Col <math>A</math> and Nul <math>A.</math> Find an example of a nonzero vector that belongs to Col <math>A,</math> as well as an example of a nonzero vector that belongs to Nul <math>A.</math> | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
| Line 193: | Line 216: | ||
|} | |} | ||
| − | '''13.''' | + | '''13.''' Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent? |
| + | |||
| + | <math>\begin{bmatrix} | ||
| + | 1 \\ | ||
| + | 0 \\ | ||
| + | 2 | ||
| + | \end{bmatrix}, | ||
| + | \begin{bmatrix} | ||
| + | 3 \\ | ||
| + | 1 \\ | ||
| + | 1 | ||
| + | \end{bmatrix}, | ||
| + | \begin{bmatrix} | ||
| + | -2 \\ | ||
| + | -1 \\ | ||
| + | 1 | ||
| + | \end{bmatrix}, | ||
| + | \begin{bmatrix} | ||
| + | 5 \\ | ||
| + | 2 \\ | ||
| + | 2 | ||
| + | \end{bmatrix}</math> | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
| Line 207: | Line 252: | ||
|} | |} | ||
| − | '''14.''' | + | '''14.''' Let |
| + | <math>B= | ||
| + | \begin{bmatrix} | ||
| + | 1 & -2 & 3 & 4\\ | ||
| + | 0 & 3 &0 &0\\ | ||
| + | 0 & 5 & 1 & 2\\ | ||
| + | 0 & -1 & 3 & 6 | ||
| + | \end{bmatrix}. | ||
| + | </math> | ||
| + | |||
| + | (a) Is <math>B</math> invertible? Explain. | ||
| + | |||
| + | (b) Define a linear transformation <math>T</math> by the formula <math>T(\vec{x})=B\vec{x}.</math> Is <math>T</math> onto? Explain. | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
| Line 221: | Line 279: | ||
|} | |} | ||
| − | '''15.''' | + | '''15.''' Suppose <math>T</math> is a linear transformation given by the formula |
| + | |||
| + | <math>T\Bigg( | ||
| + | \begin{bmatrix} | ||
| + | x_1 \\ | ||
| + | x_2 \\ | ||
| + | x_3 \\ | ||
| + | \end{bmatrix} | ||
| + | \Bigg)= | ||
| + | \begin{bmatrix} | ||
| + | 5x_1-2.5x_2+10x_3 \\ | ||
| + | -x_1+0.5x_2-2x_3 | ||
| + | \end{bmatrix}</math> | ||
| + | |||
| + | (a) Find the standard matrix for <math>T.</math> | ||
| + | |||
| + | (b) Let <math>\vec{u}=7\vec{e_1}-4\vec{e_2}.</math> Find <math>T(\vec{u}).</math> | ||
| + | |||
| + | (c) Is <math>\begin{bmatrix} | ||
| + | -1 \\ | ||
| + | 3 | ||
| + | \end{bmatrix}</math> in the range of <math>T?</math> Explain. | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
| Line 235: | Line 315: | ||
|} | |} | ||
| − | '''16.''' | + | '''16.''' Let <math>A</math> and <math>B</math> be <math>6\times 6</math> matrices with det <math>A=-10</math> and det <math>B=5.</math> Use properties of |
| + | |||
| + | determinants to compute: | ||
| + | |||
| + | (a) det <math>3A</math> | ||
| + | |||
| + | (b) det <math>(A^TB^{-1})</math> | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
| Line 292: | Line 379: | ||
'''20.''' | '''20.''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
| + | |- | ||
| + | | | ||
| + | |- | ||
| + | |} | ||
| + | |||
| + | '''21.''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
| + | |- | ||
| + | | | ||
| + | |- | ||
| + | |} | ||
| + | |||
| + | '''22.''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
| + | |- | ||
| + | | | ||
| + | |- | ||
| + | |} | ||
| + | |||
| + | '''23.''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
| + | |- | ||
| + | | | ||
| + | |- | ||
| + | |} | ||
| + | |||
| + | '''24.''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
| + | |- | ||
| + | | | ||
| + | |- | ||
| + | |} | ||
| + | |||
| + | '''25.''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
| + | |- | ||
| + | | | ||
| + | |- | ||
| + | |} | ||
| + | |||
| + | '''26.''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
| + | |- | ||
| + | | | ||
| + | |- | ||
| + | |} | ||
| + | |||
| + | '''27.''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
| + | |- | ||
| + | | | ||
| + | |- | ||
| + | |} | ||
| + | |||
| + | '''28.''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
| + | |- | ||
| + | | | ||
| + | |- | ||
| + | |} | ||
| + | |||
| + | '''29.''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
| + | |- | ||
| + | | | ||
| + | |- | ||
| + | |} | ||
| + | |||
| + | '''30.''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | | | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
| + | |- | ||
| + | | | ||
| + | |- | ||
| + | |} | ||
| + | |||
| + | '''31.''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
Revision as of 16:53, 24 August 2017
This is a list of sample problems and is meant to represent the material usually covered in Math 31. An actual test may or may not be similar.
1. True or false: If all the entries of a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7\times 7}
matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}
are Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7,}
then det Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}
must be Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7^7.}
| Solution: |
|---|
| Final Answer: |
|---|
2. True or false: If a matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^2} is diagonalizable, then the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} must be diagonalizable as well.
| Solution: |
|---|
| Final Answer: |
|---|
3. True or false: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\times 4} matrix with characteristic equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is diagonalizable.
| Solution: |
|---|
| Final Answer: |
|---|
4. True or false: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is invertible, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is diagonalizable.
| Solution: |
|---|
| Final Answer: |
|---|
5. True or false: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} are invertible Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\times n} matrices, then so is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A+B.}
| Solution: |
|---|
| Final Answer: |
|---|
6. True or false: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\times 5} matrix and dim Nul Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=2,} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\vec{x}=\vec{b}} is consistent for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{b}} in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^3.}
| Solution: |
|---|
| Final Answer: |
|---|
7. True or false: Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C=AB} for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\times 4} matrices Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B.} If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} is invertible, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is invertible.
| Solution: |
|---|
| Final Answer: |
|---|
8. True or false: Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W} be a subspace of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^4} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} be a vector in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^4.} If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}\in W} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}\in W^\perp,} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}=\vec{0}.}
| Solution: |
|---|
| Final Answer: |
|---|
9. True or false: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is an invertible Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\times 3} matrix, and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} are Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\times 3} matrices such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB=AC,} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=C.}
| Solution: |
|---|
| Final Answer: |
|---|
10.
(a) Is the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}} diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
(b) Is the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}} diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
| Solution: |
|---|
| Final Answer: |
|---|
11. Find the eigenvalues and eigenvectors of the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix}.}
| Solution: |
|---|
| Final Answer: |
|---|
12. Consider the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}} and assume that it is row equivalent to the matrix
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B= \begin{bmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}.}
(a) List rank Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} and dim Nul Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A.}
(b) Find bases for Col and Nul Find an example of a nonzero vector that belongs to Col as well as an example of a nonzero vector that belongs to Nul
| Solution: |
|---|
| Final Answer: |
|---|
13. Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?
| Solution: |
|---|
| Final Answer: |
|---|
14. Let
(a) Is invertible? Explain.
(b) Define a linear transformation by the formula Is onto? Explain.
| Solution: |
|---|
| Final Answer: |
|---|
15. Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
| Solution: |
|---|
| Final Answer: |
|---|
16. Let and be matrices with det and det Use properties of
determinants to compute:
(a) det
(b) det
| Solution: |
|---|
| Final Answer: |
|---|
17.
| Solution: |
|---|
| Final Answer: |
|---|
18.
| Solution: |
|---|
| Final Answer: |
|---|
19.
| Solution: |
|---|
| Final Answer: |
|---|
20.
| Solution: |
|---|
| Final Answer: |
|---|
21.
| Solution: |
|---|
| Final Answer: |
|---|
22.
| Solution: |
|---|
| Final Answer: |
|---|
23.
| Solution: |
|---|
| Final Answer: |
|---|
24.
| Solution: |
|---|
| Final Answer: |
|---|
25.
| Solution: |
|---|
| Final Answer: |
|---|
26.
| Solution: |
|---|
| Final Answer: |
|---|
27.
| Solution: |
|---|
| Final Answer: |
|---|
28.
| Solution: |
|---|
| Final Answer: |
|---|
29.
| Solution: |
|---|
| Final Answer: |
|---|
30.
| Solution: |
|---|
| Final Answer: |
|---|
31.
| Solution: |
|---|
| Final Answer: |
|---|