Difference between revisions of "U-substitution"

From Grad Wiki
Jump to navigation Jump to search
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Introduction==
 
==Introduction==
The method of <math>u</math>-substitution is used to simplify the function you are integrating so that you can easily recognize it's antiderivative. This method is closely related to the chain rule for derivatives.
+
The method of &nbsp;<math style="vertical-align: -1px">u</math>-substitution is used to simplify the function you are integrating so that you can easily recognize it's antiderivative.  
  
One question that is frequently asked is "How do you know what substitution to make?" In general, this is a difficult question to answer since it is dependent on the integral. The best way to master <math>u</math>-substitution is to work out as many problems as possible. This will help you: (1) understand the <math>u</math>-substitution method and (2) correctly identify the necessary substitution.
+
This method is closely related to the chain rule for derivatives.
  
<u>NOTE</u>: After you plug-in your substitution, all of the <math>x</math>'s in your integral should be gone. The only variables remaining in your integral should be <math>u</math>'s.
+
One question that is frequently asked is "How do you know what substitution to make?" In general, this is a difficult question to answer since it is dependent on the integral. The best way to master &nbsp;<math style="vertical-align: -1px">u</math>-substitution is to work out as many problems as possible. This will help you:
 +
 
 +
(1) understand the &nbsp;<math style="vertical-align: -1px">u</math>-substitution method and
 +
 
 +
(2) correctly identify the necessary substitution.
 +
 
 +
<u>NOTE</u>: After you plug-in your substitution, all of the &nbsp;<math style="vertical-align: 0px">x</math>'s in your integral should be gone. The only variables remaining in your integral should be &nbsp;<math style="vertical-align: 0px">u</math>'s.
  
 
==Warm-Up==
 
==Warm-Up==
Line 13: Line 19:
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -3px">u=4x^2+5x+3.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -5px">du=(8x+5)~dx.</math>
 +
|-
 +
|-
 +
|Plugging these into our integral, we get &nbsp;<math style="vertical-align: -14px">\int e^u~du,</math>&nbsp; which we know how to integrate.
 +
|-
 +
|So, we get
 
|-
 
|-
 
|
 
|
|-
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\int (8x+5)e^{4x^2+5x+3}~dx} & = & \displaystyle{\int e^u~du}\\
 +
&&\\
 +
& = & \displaystyle{e^u+C}\\
 +
&&\\
 +
& = & \displaystyle{e^{4x^2+5x+3}+C.} \\
 +
\end{array}</math>
 
|}
 
|}
  
Line 21: Line 40:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>e^{4x^2+5x+3}+C</math>
 
|-
 
|-
 
|}
 
|}
Line 29: Line 48:
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -2px">u=1-2x^2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -2px">du=-4x~dx.</math>&nbsp; Hence, &nbsp;<math style="vertical-align: -15px">\frac{du}{-4}=x~dx.</math>&nbsp;
 +
|-
 +
|Plugging these into our integral, we get
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int\frac{x}{\sqrt{1-2x^2}}~dx} & = & \displaystyle{\int -\frac{1}{4}~u^{-\frac{1}{2}}~du}\\
 +
&&\\
 +
& = & \displaystyle{-\frac{1}{2}u^{\frac{1}{2}}+C}\\
 +
&&\\
 +
& = & \displaystyle{-\frac{1}{2}\sqrt{1-2x^2}+C.} \\
 +
\end{array}</math>
 
|-
 
|-
 
|}
 
|}
Line 37: Line 67:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>-\frac{1}{2}\sqrt{1-2x^2}+C</math>
 
|-
 
|-
 
|}
 
|}
Line 45: Line 75:
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -6px">u=\ln(x).</math>&nbsp; Then, &nbsp;<math style="vertical-align: -14px">du=\frac{1}{x}~dx.</math>
 +
|-
 +
|Plugging these into our integral, we get
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int\frac{\sin(\ln x)}{x}~dx} & = & \displaystyle{\int \sin(u)~du}\\
 +
&&\\
 +
& = & \displaystyle{-\cos(u)+C}\\
 +
&&\\
 +
& = & \displaystyle{-\cos(\ln x)+C.} \\
 +
\end{array}</math>
 
|-
 
|-
 
|}
 
|}
Line 53: Line 94:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>-\cos(\ln x)+C</math>
 
|-
 
|-
 
|}
 
|}
Line 61: Line 102:
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -1px">u=x^2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=2x~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">\frac{du}{2}=x~dx.</math>&nbsp;
 +
|-
 +
|Plugging these into our integral, we get
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int xe^{x^2}~dx} & = & \displaystyle{\int \frac{1}{2}e^u~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}e^u+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}e^{x^2}+C.} \\
 +
\end{array}</math>
 
|-
 
|-
 
|}
 
|}
Line 69: Line 121:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{2}e^{x^2}+C</math>
 
|-
 
|-
 
|}
 
|}
  
 +
== Exercise 1 ==
 +
 +
Evaluate the indefinite integral &nbsp;<math style="vertical-align: -16px">\int \frac{2}{y^2+4}~dy.</math>
 +
 +
First, we factor out &nbsp;<math style="vertical-align: -1px">4</math>&nbsp; out of the denominator.
 +
 +
So, we have
 +
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{4}\int \frac{2}{\frac{y^2}{4}+1}~dy}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\int \frac{1}{(\frac{y}{2})^2+1}~dy.}\\
 +
\end{array}</math>
 +
 +
Now, we use &nbsp;<math style="vertical-align: -1px">u</math>-substitution. Let &nbsp;<math>u=\frac{y}{2}.</math>
 +
 +
Then, &nbsp;<math style="vertical-align: -14px">du=\frac{1}{2}~dy</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">2~du=dy.</math>
  
== Exercise 1 ==
+
Plugging these into our integral, we get
  
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{2}\int \frac{2}{u^2+1}~du}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{1}{u^2+1}~du}\\
 +
&&\\
 +
& = & \displaystyle{\arctan(u)+C}\\
 +
&&\\
 +
& = & \displaystyle{\arctan\bigg(\frac{y}{2}\bigg)+C.}\\
 +
\end{array}</math>
  
 +
So, we have
 +
::<math>\int \frac{2}{y^2+4}~dy=\arctan\bigg(\frac{y}{2}\bigg)+C.</math>
  
 
== Exercise 2 ==
 
== Exercise 2 ==
  
 +
Evaluate the indefinite integral &nbsp;<math style="vertical-align: -17px">\int \frac{\cos(x)}{(5+\sin x)^2}~dx.</math>
  
 +
Let &nbsp;<math style="vertical-align: -5px">u=5+\sin(x).</math>&nbsp; Then, &nbsp;<math style="vertical-align: -5px">u=\cos(x)~dx.</math>
  
 +
Plugging these into our integral, we get
 +
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{\cos(x)}{(5+\sin x)^2}~dx} & = & \displaystyle{\int \frac{1}{u^2}~du}\\
 +
&&\\
 +
& = & \displaystyle{-\frac{1}{u}+C}\\
 +
&&\\
 +
& = & \displaystyle{-\frac{1}{5+\sin(x)}+C.}
 +
\end{array}</math>
 +
 +
So, we have
 +
::<math>\int \frac{\cos(x)}{(5+\sin x)^2}~dx=-\frac{1}{5+\sin(x)}+C.</math>
  
 
== Exercise 3 ==
 
== Exercise 3 ==
  
 +
Evaluate the indefinite integral &nbsp;<math style="vertical-align: -16px">\int \frac{x+5}{2x+3}~dx.</math>
  
 +
Here, the substitution is not obvious.
 +
 +
Let &nbsp;<math style="vertical-align: -3px">u=2x+3.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=2~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{2}=dx.</math>
 +
 +
Now, we need a way of getting rid of &nbsp;<math style="vertical-align: -2px">x+5</math>&nbsp; in the numerator.
 +
 +
Solving for &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in the first equation, we get &nbsp;<math style="vertical-align: -14px">x=\frac{1}{2}u-\frac{3}{2}.</math>
 +
 +
Plugging these into our integral, we get
 +
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{x+5}{2x+3}~dx} & = & \displaystyle{\int \frac{(\frac{1}{2}u-\frac{3}{2})+5}{2u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\int \frac{\frac{1}{2}u+\frac{7}{2}}{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{4}\int \frac{u+7}{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{4}\int 1+\frac{7}{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{4}(u+7\ln|u|)+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{4}(2x+3+7\ln|2x+3|)+C.}\\
 +
\end{array}</math>
 +
 +
So, we get
 +
::<math>\int \frac{x+5}{2x+3}~dx=\frac{1}{4}(2x+3+7\ln|2x+3|)+C.</math>
  
 
== Exercise 4 ==
 
== Exercise 4 ==
 +
 +
Evaluate the indefinite integral &nbsp;<math style="vertical-align: -14px">\int \frac{x^2+4}{x+2}~dx.</math>
 +
 +
Let &nbsp;<math style="vertical-align: -2px">u=x+2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=dx.</math>
 +
 +
Now, we need a way of replacing &nbsp;<math style="vertical-align: -2px">x^2+4.</math>
 +
 +
If we solve for &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in our first equation, we get &nbsp;<math style="vertical-align: -1px">x=u-2.</math>
 +
 +
Now, we square both sides of this last equation to get &nbsp;<math style="vertical-align: -5px">x^2=(u-2)^2.</math>
 +
 +
Plugging in to our integral, we get
 +
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{x^2+4}{x+2}~dx} & = & \displaystyle{\int \frac{(u-2)^2+4}{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{u^2-4u+4+4}{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{u^2-4u+8}{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\int u-4+\frac{8}{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{u^2}{2}-4u+8\ln|u|+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.}\\
 +
\end{array}</math>
 +
 +
So, we have
 +
::<math>\int \frac{x^2+4}{x+2}~dx=\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.</math>

Latest revision as of 14:57, 24 August 2017

Introduction

The method of  -substitution is used to simplify the function you are integrating so that you can easily recognize it's antiderivative.

This method is closely related to the chain rule for derivatives.

One question that is frequently asked is "How do you know what substitution to make?" In general, this is a difficult question to answer since it is dependent on the integral. The best way to master  -substitution is to work out as many problems as possible. This will help you:

(1) understand the  -substitution method and

(2) correctly identify the necessary substitution.

NOTE: After you plug-in your substitution, all of the  's in your integral should be gone. The only variables remaining in your integral should be  's.

Warm-Up

Evaluate the following indefinite integrals.

1)  

Solution:  
Let    Then,  
Plugging these into our integral, we get    which we know how to integrate.
So, we get
Final Answer:  
       

2)  

Solution:  
Let    Then,    Hence,   
Plugging these into our integral, we get
Final Answer:  
       

3)  

Solution:  
Let    Then,  
Plugging these into our integral, we get
Final Answer:  
       

4)  

Solution:  
Let    Then,    and   
Plugging these into our integral, we get
Final Answer:  
       

Exercise 1

Evaluate the indefinite integral  

First, we factor out    out of the denominator.

So, we have

Now, we use  -substitution. Let  

Then,    and  

Plugging these into our integral, we get

So, we have

Exercise 2

Evaluate the indefinite integral  

Let    Then,  

Plugging these into our integral, we get

So, we have

Exercise 3

Evaluate the indefinite integral  

Here, the substitution is not obvious.

Let    Then,    and  

Now, we need a way of getting rid of    in the numerator.

Solving for    in the first equation, we get  

Plugging these into our integral, we get

So, we get

Exercise 4

Evaluate the indefinite integral  

Let    Then,  

Now, we need a way of replacing  

If we solve for    in our first equation, we get  

Now, we square both sides of this last equation to get  

Plugging in to our integral, we get

So, we have