Difference between revisions of "009A Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|We begin by noticing that we plug in &nbsp;<math style="vertical-align: 0px">x=4</math>&nbsp; into
+
|We begin by noticing that if we plug in &nbsp;<math style="vertical-align: 0px">x=4</math>&nbsp; into
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\sqrt{x+5}-3}{x-4},</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\sqrt{x+5}-3}{x-4},</math>

Revision as of 16:37, 20 May 2017

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule, Part 1

        Let    and    where    and    are differentiable functions

       on an open interval    containing    and    on    except possibly at   
       Then,  


Solution:

(a)

Step 1:  
We begin by noticing that if we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we plug in    to get
       

(c)

Step 1:  
First, we have
       
Step 2:  
Now,
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam