Difference between revisions of "009B Sample Final 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| (30 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<span class="exam"> Compute the following integrals. | <span class="exam"> Compute the following integrals. | ||
| − | <span class="exam">a) <math>\int | + | <span class="exam">(a) <math>\int \frac{t^2}{\sqrt{1-t^6}}~dt</math> |
| − | <span class="exam">b) <math>\int \frac{2x^2+1}{2x^2+x} | + | <span class="exam">(b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math> |
| − | |||
| − | |||
| + | <span class="exam">(c) <math>\int \sin^3x~dx</math> | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |'''1.''' Through partial fraction decomposition, we can write the fraction |
| + | |- | ||
| + | | <math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math> | ||
| + | |- | ||
| + | | for some constants <math style="vertical-align: -4px">A,B.</math> | ||
| + | |- | ||
| + | |'''2.''' Recall the Pythagorean identity | ||
| + | |- | ||
| + | | <math style="vertical-align: -5px">\sin^2(x)+\cos^2(x)=1.</math> | ||
|} | |} | ||
| + | |||
'''Solution:''' | '''Solution:''' | ||
| Line 20: | Line 28: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |We first note that | ||
|- | |- | ||
| | | | ||
| + | <math>\int \frac{t^2}{\sqrt{1-t^6}}~dt=\int \frac{t^2}{\sqrt{1-(t^3)^2}}~dt.</math> | ||
| + | |- | ||
| + | |Now, we proceed by <math>u</math>-substitution. | ||
| + | |- | ||
| + | |Let <math style="vertical-align: 0px">u=t^3.</math> | ||
|- | |- | ||
| − | | | + | |Then, <math style="vertical-align: 0px">du=3t^2dt</math> and <math style="vertical-align: -14px">\frac{du}{3}=t^2dt.</math> |
|- | |- | ||
| − | | | + | |So, we have |
|- | |- | ||
| | | | ||
| + | <math>\int \frac{t^2}{\sqrt{1-t^6}}~dt=\int \frac{1}{3\sqrt{1-u^2}}~du.</math> | ||
|} | |} | ||
| Line 33: | Line 49: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we need to use trig substitution. |
| + | |- | ||
| + | |Let <math style="vertical-align: -1px">u=\sin \theta.</math> Then, <math style="vertical-align: 0px">du=\cos \theta d\theta.</math> | ||
|- | |- | ||
| − | | | + | |So, we have |
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int \frac{t^2}{\sqrt{1-t^6}}~dt} & = & \displaystyle{\int \frac{\cos \theta}{3\sqrt{1-\sin^2\theta}}~d\theta}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int \frac{\cos \theta}{3\sqrt{\cos^2\theta}}~d\theta}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int \frac{\cos \theta}{3\cos \theta} d\theta}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int \frac{1}{3}~d\theta}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{3}\theta +C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{3}\arcsin(u)+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{3}\arcsin(t^3)+C.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 45: | Line 78: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, we add and subtract <math style="vertical-align: 0px">x</math> from the numerator. |
|- | |- | ||
| − | | | + | |So, we have |
|- | |- | ||
| | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int\frac{2x^2+x-x+1}{2x^2+x}~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int 1~dx+\int\frac{1-x}{2x^2+x}~dx}.\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, we need to use partial fraction decomposition for the second integral. | ||
| + | |- | ||
| + | |Since <math style="vertical-align: -5px">2x^2+x=x(2x+1),</math> we let | ||
| + | |- | ||
| + | | <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}.</math> | ||
| + | |- | ||
| + | |Multiplying both sides of the last equation by <math style="vertical-align: -5px">x(2x+1),</math> | ||
| + | |- | ||
| + | |we get | ||
| + | |- | ||
| + | | <math style="vertical-align: -5px">1-x=A(2x+1)+Bx.</math> | ||
| + | |- | ||
| + | |If we let <math style="vertical-align: -5px">x=0,</math> the last equation becomes <math style="vertical-align: -1px">1=A.</math> | ||
| + | |- | ||
| + | |If we let <math style="vertical-align: -14px">x=-\frac{1}{2},</math> then we get <math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B.</math> Thus, <math style="vertical-align: 0px">B=-3.</math> | ||
| + | |- | ||
| + | |So, in summation, we have | ||
| + | |- | ||
| + | | <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}.</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
| + | |- | ||
| + | |If we plug in the last equation from Step 2 into our final integral in Step 1, we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int 1~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx.}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | !Step | + | !Step 4: |
| + | |- | ||
| + | |For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. | ||
| + | |- | ||
| + | |Let <math style="vertical-align: -2px">u=2x+1.</math> | ||
| + | |- | ||
| + | |Then, <math style="vertical-align: 0px">du=2\,dx</math> and <math style="vertical-align: -14px">\frac{du}{2}=dx.</math> | ||
| + | |- | ||
| + | |Thus, our integral becomes | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C.}\\ | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Therefore, the final answer is | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x-\frac{3}{2}\ln (2x+1) +C.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 71: | Line 162: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, we write |
| + | |- | ||
| + | | <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx.</math> | ||
| + | |- | ||
| + | |Using the identity <math style="vertical-align: -5px">\sin^2x+\cos^2x=1,</math> we get | ||
| + | |- | ||
| + | | <math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math> | ||
| + | |- | ||
| + | |If we use this identity, we have | ||
| + | |- | ||
| + | | <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx.</math> | ||
|- | |- | ||
| | | | ||
| Line 79: | Line 180: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we proceed by <math>u</math>-substitution. |
| + | |- | ||
| + | |Let <math>u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x dx.</math> | ||
| + | |- | ||
| + | |So we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int\sin^3x~dx} & = & \displaystyle{\int -(1-u^2)~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-u+\frac{u^3}{3}+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-\cos x+\frac{\cos^3x}{3}+C}.\\ | ||
| + | \end{array}</math> | ||
|- | |- | ||
| | | | ||
|} | |} | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' <math>\frac{1}{3}\arcsin(t^3)+C</math> |
|- | |- | ||
| − | |'''(b)''' | + | | '''(b)''' <math style="vertical-align: -14px">x+\ln x-\frac{3}{2}\ln (2x+1) +C</math> |
|- | |- | ||
| − | |'''(c)''' | + | | '''(c)''' <math style="vertical-align: -14px">-\cos x+\frac{\cos^3x}{3}+C</math> |
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Latest revision as of 14:01, 20 May 2017
Compute the following integrals.
(a)
(b)
(c)
| Foundations: |
|---|
| 1. Through partial fraction decomposition, we can write the fraction |
| for some constants |
| 2. Recall the Pythagorean identity |
Solution:
(a)
| Step 1: |
|---|
| We first note that |
|
|
| Now, we proceed by -substitution. |
| Let |
| Then, and |
| So, we have |
|
|
| Step 2: |
|---|
| Now, we need to use trig substitution. |
| Let Then, |
| So, we have |
|
|
(b)
| Step 1: |
|---|
| First, we add and subtract from the numerator. |
| So, we have |
|
|
| Step 2: |
|---|
| Now, we need to use partial fraction decomposition for the second integral. |
| Since we let |
| Multiplying both sides of the last equation by |
| we get |
| If we let the last equation becomes |
| If we let then we get Thus, |
| So, in summation, we have |
| Step 3: |
|---|
| If we plug in the last equation from Step 2 into our final integral in Step 1, we have |
|
|
| Step 4: |
|---|
| For the final remaining integral, we use -substitution. |
| Let |
| Then, and |
| Thus, our integral becomes |
|
|
| Therefore, the final answer is |
|
|
(c)
| Step 1: |
|---|
| First, we write |
| Using the identity we get |
| If we use this identity, we have |
| Step 2: |
|---|
| Now, we proceed by -substitution. |
| Let Then, |
| So we have |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |