Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
 
(30 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
<span class="exam"> Compute the following integrals.
 
<span class="exam"> Compute the following integrals.
  
<span class="exam">a) <math>\int e^x(x+\sin(e^x))~dx</math>
+
<span class="exam">(a) &nbsp;<math>\int \frac{t^2}{\sqrt{1-t^6}}~dt</math>
  
<span class="exam">b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math>
+
<span class="exam">(b) &nbsp;<math>\int \frac{2x^2+1}{2x^2+x}~dx</math>
 
 
<span class="exam">c) <math>\int \sin^3x~dx</math>
 
  
 +
<span class="exam">(c) &nbsp;<math>\int \sin^3x~dx</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|
+
|'''1.''' Through partial fraction decomposition, we can write the fraction
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;for some constants <math style="vertical-align: -4px">A,B.</math>
 +
|-
 +
|'''2.''' Recall the Pythagorean identity
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\sin^2(x)+\cos^2(x)=1.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 20: Line 28:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|We first note that
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\int \frac{t^2}{\sqrt{1-t^6}}~dt=\int \frac{t^2}{\sqrt{1-(t^3)^2}}~dt.</math>
 +
|-
 +
|Now, we proceed by &nbsp;<math>u</math>-substitution. 
 +
|-
 +
|Let &nbsp;<math style="vertical-align: 0px">u=t^3.</math> &nbsp;
 
|-
 
|-
|
+
|Then, &nbsp; <math style="vertical-align: 0px">du=3t^2dt</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{3}=t^2dt.</math>
 
|-
 
|-
|
+
|So, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\int \frac{t^2}{\sqrt{1-t^6}}~dt=\int \frac{1}{3\sqrt{1-u^2}}~du.</math>
 
|}
 
|}
  
Line 33: Line 49:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we need to use trig substitution.
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -1px">u=\sin \theta.</math>&nbsp; Then, &nbsp;<math style="vertical-align: 0px">du=\cos \theta d\theta.</math>
 
|-
 
|-
|
+
|So, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{t^2}{\sqrt{1-t^6}}~dt} & = & \displaystyle{\int \frac{\cos \theta}{3\sqrt{1-\sin^2\theta}}~d\theta}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{\cos \theta}{3\sqrt{\cos^2\theta}}~d\theta}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{\cos \theta}{3\cos \theta} d\theta}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{1}{3}~d\theta}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{3}\theta +C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{3}\arcsin(u)+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{3}\arcsin(t^3)+C.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 45: Line 78:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, we add and subtract &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; from the numerator.
 
|-
 
|-
|
+
|So, we have
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int\frac{2x^2+x-x+1}{2x^2+x}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int 1~dx+\int\frac{1-x}{2x^2+x}~dx}.\\
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we need to use partial fraction decomposition for the second integral.
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -5px">2x^2+x=x(2x+1),</math>&nbsp; we let
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}.</math>
 +
|-
 +
|Multiplying both sides of the last equation by &nbsp;<math style="vertical-align: -5px">x(2x+1),</math>
 +
|-
 +
|we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">1-x=A(2x+1)+Bx.</math>
 +
|-
 +
|If we let &nbsp;<math style="vertical-align: -5px">x=0,</math> the last equation becomes &nbsp;<math style="vertical-align: -1px">1=A.</math>
 +
|-
 +
|If we let &nbsp;<math style="vertical-align: -14px">x=-\frac{1}{2},</math>&nbsp; then we get &nbsp;<math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B.</math>&nbsp; Thus, &nbsp;<math style="vertical-align: 0px">B=-3.</math>
 +
|-
 +
|So, in summation, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}.</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|If we plug in the last equation from Step 2 into our final integral in Step 1, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int 1~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\
 +
&&\\
 +
& = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx.}\\
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 3: &nbsp;
+
!Step 4: &nbsp;
 +
|-
 +
|For the final remaining integral, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -2px">u=2x+1.</math>&nbsp;
 +
|-
 +
|Then, &nbsp;<math style="vertical-align: 0px">du=2\,dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{2}=dx.</math>
 +
|-
 +
|Thus, our integral becomes
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\
 +
&&\\
 +
& = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\
 +
&&\\
 +
& = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C.}\\
 +
\end{array}</math>
 +
|-
 +
|Therefore, the final answer is
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x-\frac{3}{2}\ln (2x+1) +C.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 71: Line 162:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|  
+
|First, we write
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx.</math>
 +
|-
 +
|Using the identity &nbsp;<math style="vertical-align: -5px">\sin^2x+\cos^2x=1,</math>&nbsp; we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math>
 +
|-
 +
|If we use this identity, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx.</math>
 
|-
 
|-
 
|
 
|
Line 79: Line 180:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, we proceed by &nbsp;<math>u</math>-substitution.
 +
|-
 +
|Let &nbsp;<math>u=\cos x.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=-\sin x dx.</math>
 +
|-
 +
|So we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\int\sin^3x~dx} & = & \displaystyle{\int -(1-u^2)~du}\\
 +
&&\\
 +
& = & \displaystyle{-u+\frac{u^3}{3}+C}\\
 +
&&\\
 +
& = & \displaystyle{-\cos x+\frac{\cos^3x}{3}+C}.\\
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp;<math>\frac{1}{3}\arcsin(t^3)+C</math>
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp;<math style="vertical-align: -14px">x+\ln x-\frac{3}{2}\ln (2x+1) +C</math>
 
|-
 
|-
|'''(c)'''  
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp;<math style="vertical-align: -14px">-\cos x+\frac{\cos^3x}{3}+C</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 14:01, 20 May 2017

Compute the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1. Through partial fraction decomposition, we can write the fraction
       
       for some constants
2. Recall the Pythagorean identity
       


Solution:

(a)

Step 1:  
We first note that

       

Now, we proceed by  -substitution.
Let    
Then,     and  
So, we have

       

Step 2:  
Now, we need to use trig substitution.
Let    Then,  
So, we have

       

(b)

Step 1:  
First, we add and subtract    from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since    we let
       
Multiplying both sides of the last equation by  
we get
       
If we let   the last equation becomes  
If we let    then we get    Thus,  
So, in summation, we have
       
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have

       

Step 4:  
For the final remaining integral, we use  -substitution.
Let   
Then,    and  
Thus, our integral becomes

       

Therefore, the final answer is

       

(c)

Step 1:  
First, we write
       
Using the identity    we get
       
If we use this identity, we have
       
Step 2:  
Now, we proceed by  -substitution.
Let    Then,  
So we have

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam