Difference between revisions of "009A Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 54: Line 54:
 
& = & \displaystyle{ \frac{3+\sqrt{9}}{-1}}\\
 
& = & \displaystyle{ \frac{3+\sqrt{9}}{-1}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{6}{-1}}\\
+
& = & \displaystyle{-\frac{6}{1}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{-6.}
 
& = & \displaystyle{-6.}
Line 113: Line 113:
 
\displaystyle{\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}} & = & \displaystyle{\frac{-2-3}{(-2)^2-2(-2)+4}}\\
 
\displaystyle{\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}} & = & \displaystyle{\frac{-2-3}{(-2)^2-2(-2)+4}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{-5}{12}.}
+
& = & \displaystyle{-\frac{5}{12}.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 125: Line 125:
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>1</math>
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>1</math>
 
|-
 
|-
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;<math>\frac{-5}{12}</math>
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;<math>-\frac{5}{12}</math>
 
|}
 
|}
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:44, 18 March 2017

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule
        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the denominator.
Hence, we have
       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we plug in    to get
       

(c)

Step 1:  
We begin by factoring the numerator and denominator. We have

       

So, we can cancel    in the numerator and denominator. Thus, we have

       

Step 2:  
Now, we can just plug in    to get
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam