Difference between revisions of "009A Sample Final 2, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 50: | Line 50: | ||
|Now, we have | |Now, we have | ||
|- | |- | ||
− | | <math>f(0)=1,~f(2)=\frac{ | + | | <math>f(0)=1,~f(2)=-\frac{1}{3}.</math> |
|- | |- | ||
|Therefore, the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">1</math> | |Therefore, the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">1</math> | ||
|- | |- | ||
− | |and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -15px">\frac{ | + | |and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -15px">-\frac{1}{3}.</math> |
|} | |} | ||
Line 61: | Line 61: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | The absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">1</math> and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -15px">\frac{ | + | | The absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">1</math> and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -15px">-\frac{1}{3}.</math> |
|} | |} | ||
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 13:31, 18 March 2017
Find the absolute maximum and absolute minimum values of the function
on the interval
Foundations: |
---|
1. To find the absolute maximum and minimum of on an interval |
we need to compare the values of our critical points with and |
2. To find the critical points for we set and solve for |
Also, we include the values of where is undefined. |
Solution:
Step 1: |
---|
To find the absolute maximum and minimum of on the interval |
we need to find the critical points of |
Using the Quotient Rule, we have |
|
We notice that for any |
So, there are no critical points in the interval |
Step 2: |
---|
Now, we have |
Therefore, the absolute maximum value for is |
and the absolute minimum value for is |
Final Answer: |
---|
The absolute maximum value for is and the absolute minimum value for is |