Difference between revisions of "009A Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 117: Line 117:
 
& = & \displaystyle{\frac{-\sqrt{1+0}}{(2-0)}}\\
 
& = & \displaystyle{\frac{-\sqrt{1+0}}{(2-0)}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{-1}{2}.}
+
& = & \displaystyle{-\frac{1}{2}.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 129: Line 129:
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>0</math>
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>0</math>
 
|-
 
|-
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;<math>\frac{-1}{2}</math>
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;<math>-\frac{1}{2}</math>
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:27, 18 March 2017

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule
        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we plug in    to get
       

(c)

Step 1:  
First, we have
       
Step 2:  
Now,
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam