Difference between revisions of "009A Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 48: Line 48:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we find &nbsp;<math style="vertical-align: 0px">dx.</math>&nbsp;  We have &nbsp;<math style="vertical-align: -1px">dx=1.9-2=-0.1.</math>
+
|First, we find &nbsp;<math style="vertical-align: 0px">dx.</math>&nbsp;  We have  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -1px">dx=1.9-2=-0.1.</math>
 
|-
 
|-
 
|Then, we plug this into the differential from part (a).
 
|Then, we plug this into the differential from part (a).

Revision as of 12:22, 18 March 2017

Let

(a) Find the differential    of    at  .

(b) Use differentials to find an approximate value for  .

Foundations:  
What is the differential    of    at  

        Since    the differential is  


Solution:

(a)

Step 1:  
First, we find the differential  
Since    we have

       

Step 2:  
Now, we plug    into the differential from Step 1.
So, we get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy\,=\,3(2)^2\,dx\,=\,12\,dx.}

(b)

Step 1:  
First, we find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx.}   We have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=1.9-2=-0.1.}
Then, we plug this into the differential from part (a).
So, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy\,=\,12(-0.1)\,=\,-1.2.}

Step 2:  
Now, we add the value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy}   to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^3}   to get an
approximate value of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.9^3.}
Hence, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.9^3\,\approx \, 2^3+-1.2\,=\,6.8.}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy=12\,dx}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6.8}

Return to Sample Exam