Difference between revisions of "009A Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 64: Line 64:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|Suppose that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has more than one zero. So, there exist &nbsp;<math style="vertical-align: -4px">a,b</math>&nbsp; such that &nbsp;<math style="vertical-align: -5px">f(a)=f(b)=0.</math>
+
|Suppose that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has more than one zero. So, there exist &nbsp;<math style="vertical-align: -4px">a,b</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">a<b</math>&nbsp; such that &nbsp;<math style="vertical-align: -5px">f(a)=f(b)=0.</math>
 
|-
 
|-
 
|Then, by the Mean Value Theorem, there exists &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">a<c<b</math>&nbsp; such that &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>
 
|Then, by the Mean Value Theorem, there exists &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">a<c<b</math>&nbsp; such that &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>
Line 72: Line 72:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|We have &nbsp;<math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>&nbsp; Since &nbsp;<math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math>
+
|We have &nbsp;<math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>&nbsp;  
 
|-
 
|-
|<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>&nbsp; So, &nbsp;<math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math>
+
|Since &nbsp;<math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>&nbsp;  
 +
|-
 +
|So, &nbsp;<math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math>
 
|-
 
|-
 
|which contradicts &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>&nbsp; Thus, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at most one zero.
 
|which contradicts &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>&nbsp; Thus, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at most one zero.
Line 83: Line 87:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; Since &nbsp;<math style="vertical-align: -5px">f(-5)<0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(0)>0,</math>&nbsp; there exists &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">-5<x<0</math>&nbsp; such that
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; See solution above.
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">f(x)=0</math>&nbsp; by the Intermediate Value Theorem. Hence, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at least one zero.
 
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; See Step 1 and Step 2 above.
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; See solution above.
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:19, 18 March 2017

Consider the following function:

(a) Use the Intermediate Value Theorem to show that    has at least one zero.

(b) Use the Mean Value Theorem to show that    has at most one zero.

Foundations:  
1. Intermediate Value Theorem
       If    is continuous on a closed interval    and    is any number

       between    and    then there is at least one number    in the closed interval such that  

2. Mean Value Theorem
        Suppose    is a function that satisfies the following:

         is continuous on the closed interval  

         is differentiable on the open interval  

       Then, there is a number    such that    and  


Solution:

(a)

Step 1:  
First note that  
Also,  
Since  

       

Thus,    and hence  
Step 2:  
Since    and    there exists    with    such that
  by the Intermediate Value Theorem. Hence,    has at least one zero.

(b)

Step 1:  
Suppose that    has more than one zero. So, there exist    with    such that  
Then, by the Mean Value Theorem, there exists    with    such that  
Step 2:  
We have   
Since  
        
So,  
which contradicts    Thus,    has at most one zero.


Final Answer:  
    (a)     See solution above.
    (b)     See solution above.

Return to Sample Exam