Difference between revisions of "009A Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 64: Line 64:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|Suppose that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has more than one zero. So, there exist &nbsp;<math style="vertical-align: -4px">a,b</math>&nbsp; such that &nbsp;<math style="vertical-align: -5px">f(a)=f(b)=0.</math>
+
|Suppose that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has more than one zero. So, there exist &nbsp;<math style="vertical-align: -4px">a,b</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">a<b</math>&nbsp; such that &nbsp;<math style="vertical-align: -5px">f(a)=f(b)=0.</math>
 
|-
 
|-
 
|Then, by the Mean Value Theorem, there exists &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">a<c<b</math>&nbsp; such that &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>
 
|Then, by the Mean Value Theorem, there exists &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">a<c<b</math>&nbsp; such that &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>
Line 72: Line 72:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|We have &nbsp;<math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>&nbsp; Since &nbsp;<math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math>
+
|We have &nbsp;<math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>&nbsp;  
 
|-
 
|-
|<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>&nbsp; So, &nbsp;<math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math>
+
|Since &nbsp;<math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>&nbsp;  
 +
|-
 +
|So, &nbsp;<math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math>
 
|-
 
|-
 
|which contradicts &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>&nbsp; Thus, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at most one zero.
 
|which contradicts &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>&nbsp; Thus, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at most one zero.
Line 83: Line 87:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; Since &nbsp;<math style="vertical-align: -5px">f(-5)<0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(0)>0,</math>&nbsp; there exists &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">-5<x<0</math>&nbsp; such that
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; See solution above.
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">f(x)=0</math>&nbsp; by the Intermediate Value Theorem. Hence, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at least one zero.
 
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; See Step 1 and Step 2 above.
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; See solution above.
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:19, 18 March 2017

Consider the following function:

(a) Use the Intermediate Value Theorem to show that    has at least one zero.

(b) Use the Mean Value Theorem to show that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has at most one zero.

Foundations:  
1. Intermediate Value Theorem
       If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is continuous on a closed interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c}   is any number

       between  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(b),}   then there is at least one number  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}   in the closed interval such that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=c.}

2. Mean Value Theorem
        Suppose  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is a function that satisfies the following:

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is continuous on the closed interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b].}

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is differentiable on the open interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,b).}

       Then, there is a number  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c}   such that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<c<b}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=\frac{f(b)-f(a)}{b-a}.}


Solution:

(a)

Step 1:  
First note that   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)=7.}
Also,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).}
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1\leq \sin(x) \leq 1,}

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2\leq -2\sin(x) \leq 2.}

Thus,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -10\leq f(-5) \leq -6}   and hence  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)<0.}
Step 2:  
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)<0}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)>0,}   there exists  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}   with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5<x<0}   such that
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=0}   by the Intermediate Value Theorem. Hence,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has at least one zero.

(b)

Step 1:  
Suppose that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has more than one zero. So, there exist  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a,b}   with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<b}   such that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a)=f(b)=0.}
Then, by the Mean Value Theorem, there exists  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c}   with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<c<b}   such that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=0.}
Step 2:  
We have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3-2\cos(x).}  
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1\leq \cos(x)\leq 1,}
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 \leq -2\cos(x)\leq 2.}  
So,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\leq f'(x) \leq 5,}
which contradicts  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=0.}   Thus,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has at most one zero.


Final Answer:  
    (a)     See solution above.
    (b)     See solution above.

Return to Sample Exam