Difference between revisions of "009A Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 33: Line 33:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|If &nbsp; <math style="vertical-align: -4px">s=50,</math>&nbsp; then &nbsp;<math style="vertical-align: -2px">h=\sqrt{50^2-30^2}=40.</math>
+
|If &nbsp; <math style="vertical-align: -4px">s=50,</math>&nbsp; then  
 
|-
 
|-
|So, we have &nbsp; <math style="vertical-align: -5px">2(40)6=2(50)s'.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -2px">h=\sqrt{50^2-30^2}=40.</math>
 
|-
 
|-
|Solving for &nbsp; <math style="vertical-align: -5px">s',</math>&nbsp;  we get &nbsp; <math style="vertical-align: -14px">s'=\frac{24}{5}</math> &nbsp; m/s.
+
|So, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">2(40)6=2(50)s'.</math>
 +
|-
 +
|Solving for &nbsp; <math style="vertical-align: -5px">s',</math>&nbsp;  we get &nbsp; <math style="vertical-align: -14px">s'=\frac{24}{5} \text{ m/s.}</math> &nbsp;
 
|}
 
|}
  
Line 44: Line 48:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -14px">s'=\frac{24}{5}</math>&nbsp; m/s
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -14px">s'=\frac{24}{5} \text{ m/s}</math>&nbsp;
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:16, 18 March 2017

A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing

when 50 (meters) of the string has been let out?

Foundations:  
The Pythagorean Theorem
        For a right triangle with side lengths    where    is the length of the

        hypotenuse, we have  


Solution:

Step 1:  
Insert diagram.
From the diagram, we have    by the Pythagorean Theorem.
Taking derivatives, we get

       

Step 2:  
If     then
       
So, we have
       
Solving for     we get    


Final Answer:  
        

Return to Sample Exam