Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 46: Line 46:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\frac{(-3)(-3-3)}{2}\,=\,\frac{18}{2}\,=\,9.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}} & = & \displaystyle{\frac{(-3)(-3-3)}{2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{18}{2}}\\
 +
&&\\
 +
& = & \displaystyle{9.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 67: Line 73:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|This limit is &nbsp; <math>+\infty.</math>
+
|This limit is &nbsp; <math>\infty.</math>
 
|}
 
|}
  
Line 94: Line 100:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}}\\
|So, we have
+
&&\\
|-
+
& = & \displaystyle{-\frac{3}{\sqrt{4}}}\\
|
+
&&\\
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math>
+
& = & \displaystyle{-\frac{3}{2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 108: Line 115:
 
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; <math style="vertical-align: 0px">9</math>
 
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; <math style="vertical-align: 0px">9</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp; <math style="vertical-align: 0px">+\infty</math>
+
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp; <math style="vertical-align: 0px">\infty</math>
 
|-
 
|-
 
|&nbsp; &nbsp; '''(c)'''&nbsp; &nbsp; <math style="vertical-align: -15px">-\frac{3}{2}</math>
 
|&nbsp; &nbsp; '''(c)'''&nbsp; &nbsp; <math style="vertical-align: -15px">-\frac{3}{2}</math>
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:09, 18 March 2017

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule
        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have

       

So, we can cancel    in the numerator and denominator. Thus, we have

       

Step 2:  
Now, we can just plug in    to get

       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
This limit is  

(c)

Step 1:  
We have

       

Since we are looking at the limit as    goes to negative infinity, we have  
So, we have

       

Step 2:  
We simplify to get

       


Final Answer:  
    (a)   
    (b)   
    (c)   

Return to Sample Exam