Difference between revisions of "009B Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.'''
+
|'''1.''' Recall
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int \frac{1}{1+x^2}~dx=\arctan(x)+C</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int \frac{1}{1+x^2}~dx=\arctan(x)+C</math>
Line 92: Line 92:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We use &nbsp;<math style="vertical-align: 0px">u</math>-substitution. Let &nbsp;<math style="vertical-align: -2px">u=1+x^3.</math>  
+
|We use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -2px">u=1+x^3.</math>  
 
|-
 
|-
 
|Then, &nbsp;<math style="vertical-align: 0px">du=3x^2dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math>
 
|Then, &nbsp;<math style="vertical-align: 0px">du=3x^2dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math>
Line 134: Line 136:
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -5px">u=\ln(x),</math>  
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -5px">u=\ln(x),</math>  
 
|-
 
|-
|we get &nbsp;<math style="vertical-align: -6px">u_1=\ln(1)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -6px">u_2=\ln(e)=1.</math>
+
|we get  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -6px">u_1=\ln(1)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -6px">u_2=\ln(e)=1.</math>
 
|-
 
|-
 
|Therefore, the integral becomes  
 
|Therefore, the integral becomes  

Revision as of 13:00, 18 March 2017

Evaluate the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1. Recall
       
2. How would you integrate  

        You could use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

(a)

Step 1:  
First, we notice
       
Now, we use  -substitution.
Let  
Then,    and  
Also, we need to change the bounds of integration.
Plugging in our values into the equation    we get
         and  
Therefore, the integral becomes
       
Step 2:  
We now have

       

(b)

Step 1:  
We use  -substitution.
Let  
Then,    and  
Therefore, the integral becomes
       
Step 2:  
We now have
       

(c)

Step 1:  
We use  -substitution.
Let  
Then,  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get
         and  
Therefore, the integral becomes
       
Step 2:  
We now have

       


Final Answer:  
   (a)    
   (b)    
   (c)    

Return to Sample Exam