Difference between revisions of "009B Sample Final 1, Problem 5"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 53: | Line 53: | ||
| <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,4).</math> | | <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,4).</math> | ||
|- | |- | ||
| − | |This intersection | + | |This intersection points can be seen in the graph shown in Step 1. |
|} | |} | ||
| Line 107: | Line 107: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' <math style="vertical-align: -5px">(0,0),(2,4)</math> (See Step 1 for the graph) | + | | '''(a)''' <math style="vertical-align: -5px">(0,0),(2,4)</math> (See Step 1 for the graph) |
|- | |- | ||
| '''(b)''' <math style="vertical-align: -15px">\int_0^2 2\pi x(2x-x^2)~dx</math> | | '''(b)''' <math style="vertical-align: -15px">\int_0^2 2\pi x(2x-x^2)~dx</math> | ||
Revision as of 11:45, 18 March 2017
The region bounded by the parabola and the line Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=2x} in the first quadrant is revolved about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis to generate a solid.
(a) Sketch the region bounded by the given functions and find their points of intersection.
(b) Set up the integral for the volume of the solid.
(c) Find the volume of the solid by computing the integral.
| Foundations: |
|---|
| 1. You can find the intersection points of two functions, say Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x),g(x),} |
|
by setting Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=g(x)} and solving for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x.} |
| 2. The volume of a solid obtained by rotating an area around the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis using cylindrical shells is given by |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int 2\pi rh~dx,} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} is the radius of the shells and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} is the height of the shells. |
Solution:
(a)
| Step 1: |
|---|
| First, we sketch the region bounded by the given functions. |
| Insert graph here. |
| Step 2: |
|---|
| Setting the equations equal, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2=2x.} |
| Solving for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,} we get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{0} & = & \displaystyle{x^2-2x}\\ &&\\ & = & \displaystyle{x(x-2).} \end{array}} |
| So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2.} |
| If we plug these values into our functions, we get the intersection points |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,4).} |
| This intersection points can be seen in the graph shown in Step 1. |
(b)
| Step 1: |
|---|
| We proceed using cylindrical shells. The radius of the shells is given by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=x.} |
| The height of the shells is given by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h=2x-x^2.} |
| Step 2: |
|---|
| So, the volume of the solid is |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int 2\pi rh~dx~=~\int_0^2 2\pi x(2x-x^2)~dx.} |
(c)
| Step 1: |
|---|
| We need to integrate |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^2 2\pi x(2x-x^2)~dx~=~2\pi\int_0^2 2x^2-x^3~dx.} |
| Step 2: |
|---|
| We have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^2 2\pi x(2x-x^2)~dx} & = & \displaystyle{2\pi\int_0^2 2x^2-x^3~dx}\\ &&\\ & = & \displaystyle{2\pi\bigg(\frac{2x^3}{3}-\frac{x^4}{4}\bigg)\bigg|_0^2}\\ &&\\ & = & \displaystyle{2\pi\bigg(\frac{2^4}{3}-\frac{2^4}{4}\bigg)-2\pi(0)}\\ &&\\ & = & \displaystyle{\frac{8\pi}{3}.}\\ \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0),(2,4)} (See Step 1 for the graph) |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^2 2\pi x(2x-x^2)~dx} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{8\pi}{3}} |