Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
|&nbsp; &nbsp; &nbsp; &nbsp;for some constants <math style="vertical-align: -4px">A,B.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;for some constants <math style="vertical-align: -4px">A,B.</math>
 
|-
 
|-
|'''2.''' We have the Pythagorean identity  
+
|'''2.''' Recall the Pythagorean identity  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x).</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x).</math>
Line 36: Line 36:
 
|Now, we proceed by &nbsp;<math>u</math>-substitution.   
 
|Now, we proceed by &nbsp;<math>u</math>-substitution.   
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: 0px">u=t^3.</math> &nbsp; Then, &nbsp; <math style="vertical-align: 0px">du=3t^2dt</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{3}=t^2dt.</math>
+
|Let &nbsp;<math style="vertical-align: 0px">u=t^3.</math> &nbsp;  
 +
|-
 +
|Then, &nbsp; <math style="vertical-align: 0px">du=3t^2dt</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{3}=t^2dt.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 132: Line 134:
 
|For the final remaining integral, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|For the final remaining integral, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -2px">u=2x+1.</math>&nbsp; Then, &nbsp;<math style="vertical-align: 0px">du=2\,dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{2}=dx.</math>
+
|Let &nbsp;<math style="vertical-align: -2px">u=2x+1.</math>&nbsp;  
 +
|-
 +
|Then, &nbsp;<math style="vertical-align: 0px">du=2\,dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{2}=dx.</math>
 
|-
 
|-
|Thus, our final integral becomes
+
|Thus, our integral becomes
 
|-
 
|-
 
|
 
|

Revision as of 12:43, 18 March 2017

Compute the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1. Through partial fraction decomposition, we can write the fraction
       
       for some constants
2. Recall the Pythagorean identity
       


Solution:

(a)

Step 1:  
We first note that

       

Now, we proceed by  -substitution.
Let    
Then,     and  
So, we have

       

Step 2:  
Now, we need to use trig substitution.
Let    Then,  
So, we have

       

(b)

Step 1:  
First, we add and subtract    from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since    we let
       
Multiplying both sides of the last equation by  
we get
       
If we let   the last equation becomes  
If we let    then we get    Thus,  
So, in summation, we have
       
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have

       

Step 4:  
For the final remaining integral, we use  -substitution.
Let   
Then,    and  
Thus, our integral becomes

       

Therefore, the final answer is

       

(c)

Step 1:  
First, we write
       
Using the identity    we get
       
If we use this identity, we have
       
Step 2:  
Now, we proceed by  -substitution.
Let    Then,  
So we have

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam